Colle sur le chapitre n°6

« Equations différentielles »

En vrac:

- 1) Les équations différentielles d'ordre un ont toujours de solutions.
- 2) Pour résoudre $xy'+y^2=\sin(x)$ sur \mathbb{R}^{*+} , on ajoute une solution particulière de cette équation à une solution quelconque de l'équation homogène associée.
- 3) Une équation différentielle linéaire y'(x) + a(x)y(x) = 0 définie sur \mathbb{R} admet seulement la fonction nulle pour solution si on impose y(0)=0

Exercice n°1

Résoudre les deux équations différentielles suivantes :

1)
$$(x^2+1)y'+(x-1)^2y=0$$

2)
$$(x^2-x)y'+y=x^2 sur]1,+\infty[$$

Exercice n°2

On cherche les fonctions y dérivables sur $\mathbb R$ de l'équation : $x^2y'+y=0$

Expliquer pourquoi cette équation sort du cadre strict du cours?

Exercice n°3

On considère l'équation différentielle : 2xy'-3y=x² (*)

- 1) Soit f une fonction définie sur \mathbb{R}^{*+} , on note g la fonction définie sur \mathbb{R}^{*-} par $x \rightarrow f(-x)$ Montrer que f est solution de (*) sur \mathbb{R}^{*+} si et seulement si g solution de (*) sur \mathbb{R}^{*-}
- 2) Déterminer les solutions f de (*) sur \mathbb{R}^{*+}

Exercice n°4

Résoudre sur $]0,\frac{\pi}{2}[$ l'équation y' $\cos(x)$ -y $\sin(x)$ = $\sin(2x)$

Problème:

- 1) Montrer que pour tout t>0, $e^t>1+t$
- 2) L'objet de cette question est la résolution du problème de Cauchy, noté P1, suivant :

$$\begin{cases} y'(t) = y(t) + t^2 \\ y(0) = 0 \end{cases}$$

- a) Résoudre l'équation différentielle : $y'(t) = y(t) + t^2$
- b) En déduire la solution y₀ au problème P1