Colle sur le chapitre n°7

« Equations différentielles »

En vrac:

- 1) Sous quelle forme chercher une solution particulière de y" $+2y'+y=e^x$?
- 2) Le principe de superposition des solutions est applicable à toutes les équations différentielles ?

Exercice n°1

Soit $n \in \mathbb{N}$, déterminer les solutions réelles de : $y''+y=\cos(nt)$

Exercice n°2

Soit (S) le système différentiel : $\begin{cases} y_1'' = y_1 + 2y_2' + \cos(x) \\ y_2'' = y_2 - 2y_1' + \sin(x) \end{cases}$ avec y_1 et y_2 deux fois dérivables sur \mathbb{R} à valeurs réelles.

En posant $y=y_1 + iy_2$ déterminer les solutions de (S) vérifiant : $\begin{cases} y_1(0) = 1 \\ y_1'(0) = 0 \end{cases}$ et $\begin{cases} y_2(0) = 0 \\ y_2'(0) = 1 \end{cases}$

Exercice n°3

Soit $n \in \mathbb{N}$, on note f_n la solution de l'équation différentielle : (n+1)y''-(2n+1)y'+ny=0 vérifiant y(0)=0 et y'(0)=1

Expliciter f_n

Problème:

On considère l'équation différentielle (E₁) : $(1+e^x)y''+2e^xy'+(2e^x+1)y=xe^x$ sur \mathbb{R}^{*+}

- 1) On pose $z=(1+e^x)y$, montrer que y est solution de (E_1) si et seulement si z est solution de (E_2) : $z''+z=xe^x$
- 2) Résoudre (E₂).
- 3) En déduire les solutions de (E_1) .