Colle sur le chapitre n°9

« Groupes »

En vrac: vrai ou faux?

- 1) (N,+) est un groupe abélien
- 2) Si H est un sous-groupe de G, alors l'élément neutre de G est aussi celui de H
- 3) Soit (G,*) un groupe, $\forall (a,b,c) \in G^3$, $a*b=a*c \Leftrightarrow b=c$

Exercice n°1

On note $i\mathbb{Q} = \{ir, r \in \mathbb{Q}\}\ \text{et } \mathbb{Q}[i] = \{a+ib, (a,b) \in \mathbb{Q}^2\}$

- 1) Montrer que $i\mathbb{Q}$ est un sous-groupe de $(\mathbb{C},+)$
- 2) Montrer que $\mathbb{Q}[i]$ est un sous-groupe de $(\mathbb{C},+)$
- 3) Est-ce que $\mathbb{Q} \cup i\mathbb{Q}$ est un sous-groupe de $(\mathbb{C},+)$?

Exercice n°2

Soit G un ensemble et * une loi de composition interne sur G, on la suppose associative et unifère.

- 1) On suppose que (G,*) est un groupe, montrer que pour tout $a \in G$, l'application $f_a : x \to x * a$ est bijective et préciser sa bijection réciproque.
- 2) Réciproquement, on suppose que pour tout $a \in G$, l'application $f_a: x \to x * a$ est bijective, montrer que (G, *) est un groupe.

Exercice n°3

Soit G un groupe noté multiplicativement, on définit une relation binaire \mathcal{R} sur G par : $\forall (x,y) \in G^2$, $x \mathcal{R} y \iff \exists a \in G$, $y = axa^{-1}$, montrer que \mathcal{R} est une relation d'équivalence.

Exercice n°4

Soit G un groupe noté multiplicativement, soit A un sous-groupe de G, pour $x \in G$, on note $Ax = \{ax, a \in A\}$

Et $xA = \{xa, a \in A \}$

On considère l'ensemble B des éléments x de G tels que Ax=xA

- 1) Montrer que A⊂B
- 2) Montrer que pour tout x de B et tout a de A, $xax^{-1} \in A$
- 3) Montrer que pour tout x de B, on a $x^{-1} \in B$

Problème:

On considère l'équation de Pell-Fermat : a^2 - $2b^2$ =1 d'inconnues (a,b) $\in Z^2$

Soit G l'ensemble des solutions de cette équation, ainsi G={(a,b)} $\in \mathbb{Z}^2$, $a^2-2b^2=1$ }

On définit sur \mathbb{Z}^2 , une opération * définie par $\forall (a,b) \in \mathbb{Z}^2$, $\forall (c,d) \in \mathbb{Z}^2$, (a,b)*(c,d)=(ac+2bd,ad+bc)

- 1) Montrer que $\forall (a, b, c, d) \in \mathbb{R}^4$, $(ac+2bd)^2-2(ad+bc)^2=(a^2-2b^2)(c^2-2d^2)$
- 2) En déduire que * est une loi de composition interne sur G
- 3) Montre que la loi * est commutative (pour les courageux, montrer qu'elle est associative sur G)
- 4) Montrer que (G,*) admet un élément neutre qu'on précisera
- 5) Montrer que $\forall (a, b) \in G^2$, $(a,b)^*(a,-b)=(1,0)$

Première année classe préparatoire INP des Hauts-de-France, lycée Fénelon Cambrai, M. Calciano