Colle sur le chapitre n°12

« Polynômes»

En vrac: vrai ou faux?

- 1) Si P est un polynôme de degré n, alors P(X²) est de degré n+2
- 2) Tout polynôme de degré n (avec n entier naturel) possède n racines distinctes
- 3) Soit $P \in \mathbb{R}[X]$, si $\alpha \in \mathbb{C}$ est racine de P alors $\bar{\alpha}$ est racine de P
- 4) Soit $P \in \mathbb{R}[X]$, P est divisible par $X^2 + 1$ si et seulement si P(i) = 0

Exercice n°1

Soit α un réel, on note P le polynôme $X^6+4X^5+8X^4+10X^3+\alpha X^2+4X+1$

On suppose que -1 est racine de P, on note j le complexe $e^{\frac{2i\pi}{3}}$

- 1) Déterminer α
- 2) Montrer que -1 est une racine de P d'ordre de multiplicité 2
- 3) Montrer que j est également racine de P
- 4) Décomposer P en produits de facteurs premiers sur ℂ[X]
- 5) Décomposer P en produits de facteurs premiers sur $\mathbb{R}[X]$

Exercice n°2

Soit P le polynôme $X^3 - 5X^2 + 6X - 1$

- 1) Montrer que P a trois racines distinctes dans C
- 2) En notant α, β, γ les trois racines de P déterminer la valeur de $\frac{1}{1-\alpha} + \frac{1}{1-\beta} + \frac{1}{1-\gamma}$

Exercice n°3

Soit k∈ \mathbb{R} , on note P le polynôme $X^3 - X^2 + k$

- 1) Déterminer une condition nécessaire et suffisante sur k pour que P ait une racine multiple
- 2) Donner le tableau de variations de la fonction $x \to P(x)sur \mathbb{R}$
- 3) Déterminer une condition nécessaire et suffisante sur k pour que P ait 3 racines distinctes
- 4) Déterminer une condition nécessaire et suffisante sur k pour que P soit scindé sur $\mathbb{R}[X]$

Exercice n°4: Les deux questions sont indépendantes!

- 1) Soit n un entier naturel non nul, et $P \in \mathbb{R}_n[X]$ tel que $\forall k \in [0, n], P(k) = \frac{k}{k+1}$
- 2) Montrer, sans calculs, que $(X-1)(X^{15}-1)$ est divisible par $(X^5-1)(X^3-1)$

Problème:

Soit P un polynôme non nul et unitaire vérifiant la relation : $P(X)P(X-1)=P(X^2)$

- 1) Montrer que le polynôme $Q(X)=X^2+X+1$ vérifie la relation.
- 2) Démontrer que si z est racine de P alors z² est également racine de P
- 3) Démontrer que les racines de P sont de module 0 ou 1.