Colle sur le chapitre n°15

« Intégrale »

En vrac: vrai ou faux?

- 1) Si $f \in C^0(I, \mathbb{R})$ et $a \in I$ alors la fonction $x \to \int_a^x f(t) dt$ est toujours C^1 sur I
- 2) Si $\in C^0([a,b],\mathbb{R})$ et si $\int_a^b f(t)dt = 0$ alors f = 0 sur [a,b]
- 3) Soit $I = \int_0^1 \sqrt{1 u^2} du$ alors le changement de variable $u = \sin(t)$ où $t \in [0, \pi]$ permet de calculer

Exercice n°1

Déterminer la dérivée de f : $x \rightarrow \int_{1}^{2x} \frac{e^{t}}{t} dt$

Exercice n°2

On pose $F(x) = \int_0^x \frac{1}{1 + \cos^2(t)} dt$

- 1) Montrer que F est C^1 sur \mathbb{R}
- 2) Pour $x \in [0, \frac{\pi}{2}[$, calculer F(x) en posant $t=\arctan(u)$
- 3) Déterminer les valeurs de $F(\frac{\pi}{2})$ et de $F(\pi)$

Exercice n°3

Pour $n \in \mathbb{N}$, on pose $u_n = \int_0^1 \frac{t^n}{1+t^2} dt$

- 1) Montrer que pour $n \in \mathbb{N}$, $0 \le u_n \le \frac{1}{n+1}$
- 2) A l'aide d'une IPP, montrer que $nu_n = \frac{n}{2(n+1)} + \frac{2n}{n+1} \int_0^1 \frac{t^{n+2}}{(1+t^2)^2} dt$
- 3) Déterminer $\lim_{n\to+\infty} nu_n$

Exercice n°4

Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{t^n}{1+t+t^2} dt$

- 1) Montrer que la suite (I_n) est décroissante.
- 2) Calculer $I_n + I_{n+1} + I_{n+2}$ en fonction de n 3) Montrer que pour $2 \le n, \frac{1}{n+1} \le 3I_n \le \frac{1}{n-1}$
- 4) En déduire $\lim_{n \to +\infty} nI_n$

Problème:

On définit les intégrales : $I_n = \int_0^{\frac{\pi}{2}} cos^n t dt$ et $J_n = \int_0^{\frac{\pi}{2}} sin^n t dt$

- 1) Déterminer J₀ et J₁
- 2) Calculer I₂
- 3) Justifier que $\forall n \in \mathbb{N}, J_n \geq 0$
- 4) Démontrer que : $J_{n+1} J_n \le 0$
- 5) A l'aide du changement de variable $u = \frac{\pi}{2} t$, montrer que $I_n = J_n$
- 6) A l'aide d'une intégration par parties, montrer que pour tout entier naturel, $I_{n+2} = \frac{n+1}{n+2}I_n$
- 7) En déduire la valeur de I₃