Colle sur le chapitre n°16

« Relations de comparaison»

En vrac: vrai ou faux?

1) On a
$$\cos(x) \sim_{x\to 0} 1 + \frac{x^2}{2}$$

1) On a
$$\cos(x) \sim_{x \to 0} 1 + \frac{x^2}{2}$$

2) Si $\lim_{x \to a} (f - g)(x) = 0$ alors $f(x) \sim_{x \to a} g(x)$

3) Si
$$f(x) \sim_{x \to a} g(x)$$
 alors $\lim_{x \to a} (f - g)(x) = 0$

4) Si
$$f(x) \sim_{x \to a} 0$$
 alors f est nulle au voisinage de a

5) Si
$$u_n \sim v_n$$
 alors $e^{u_n} \sim e^{v_n}$

6) Si
$$u_n \sim v_n$$
 alors $\sqrt{u_n} \sim \sqrt{v_n}$

Exercice n°1

Déterminer un équivalent simple en 0 :

1)
$$x \rightarrow \frac{sinx + cosx - 1}{tanx(x - xcosx)}$$

1)
$$x \rightarrow \frac{\sin x + \cos x - 1}{\tan x(x - x \cos x)}$$

2) $x \rightarrow \frac{\sqrt{1 + \tan^2(x)} - 1}{\tan(x)}$

3)
$$x \rightarrow \ln(\cos(x))$$

Exercice n°2

Déterminer un équivalent simple des suites suivantes :

1)
$$u_n = \frac{n - \ln(n) + \frac{4}{n}}{e^n - n^2}$$

2)
$$u_n = (\tan(\frac{\pi}{4} + \frac{1}{n}))^n$$

3) $u_n = (\frac{2n^5}{5n+3n^5})^n$

3)
$$u_n = \left(\frac{2n^5}{5n+3n^5}\right)^n$$

Exercice n°3

Déterminer un équivalent simple de $x^{\frac{1}{x}} - 1$ au voisinage $de + \infty$

En déduire un équivalent simple de $x^{x^{\frac{1}{x}}} - x$

Exercice n°4

Montrer que $\ln(\ln(x)) = o_{x\to\infty}(\ln(x))$

En déduire la valeur de $\lim_{x\to\infty} \left(\frac{\ln(x)}{x}\right)^{\frac{1}{x}}$