Colle sur le chapitre n°18

« DL»

En vrac: vrai ou faux?

- 1) Une fonction f admet un DL à l'ordre 1 en 0 si et seulement si f est dérivable en 0
- 2) Le DL à l'ordre 4 en 0 de fg est le produit des DL à l'ordre 2 de f et de g
- 3) Comme $e^u = 1 + u + o(u)$, alors $e^{\cos(x)} = 1 + \cos(x) + o(\cos(x))$
- 4) Le DL à l'ordre 1 en 0 de $(1 + x^2)^{\frac{1}{x}}$ est 1+x+o(x)

Exercice n°1

Déterminer les DL en 0 de :

1)
$$\frac{e^x}{1+x}$$
 à l'ordre 2

1)
$$\frac{e^x}{1+x}$$
 à l'ordre 2 2) $\sin^2(x)$ à l'ordre 6 3) $\frac{\cos(x)}{(1+x)^2}$ à l'ordre 4

Exercice n°2

Déterminer le DL en 0 à l'ordre 2 :

1)
$$\sqrt{1 + \sin(x)}$$
 2) $\ln(\frac{1}{2} + \frac{e^x}{2})$

2)
$$\ln(\frac{1}{2} + \frac{e^x}{2})$$

Exercice n°3

Soit f la fonction définie sur $\mathbb{R} \setminus \{1\}$ par $f(x) = \frac{x\sqrt{x^2+1}}{x-1}$

- 1) Donner le DL en 0 à l'ordre 2 de f
- 2) En déduire l'équation de la tangente à la courbe représentative de f en 0
- 3) Préciser la position de la tangente précédente par rapport à la courbe de f
- 4) Montrer que $f(x) = +\infty x + 1 + \frac{3}{2x} + o(\frac{1}{x})$

Exercice n°4

Pour $x \in \mathbb{R}$, on pose $f(x) = xe^{x^2}$

- 1) Démontrer que f réalise une bijection de \mathbb{R} sur \mathbb{R}
- 2) Justifier que f^{-1} admet un DL à l'ordre 4 en 0
- 3) Donner alors son développement limité

Problème:

On définit une suite v_n définie par $v_0=1$ et $\forall n\in\mathbb{N}, v_{n+1}=\sqrt{n+v_n}$

- 1) Montrer que $\forall n \geq 1, \sqrt{n-1} \leq v_n \leq 2\sqrt{n}$
- 2) En déduire que $v_n = O(\sqrt{n})$
- 3) Montrer que $v_n \sim_{+\infty} \sqrt{n}$
- 4) Montrer que $v_n = \sqrt{n} + \frac{1}{2} + o(1)$ pour n tendant vers $+\infty$

Première année classe préparatoire INP des Hauts-de-France, lycée Fénelon Cambrai, M. Calciano