Colle sur le chapitre n°19

« Matrices»

En vrac: vrai ou faux?

- 1) Si A et B sont semblables alors pour tout entier p, A^p et B^p sont semblables
- 2) Si A et B sont semblables alors elles sont équivalentes.
- 3) Soit $A \in \mathcal{M}_{n,n}(K)$, alors rang $(A) \leq \min(n,p)$
- 4) Toute matrice carrée est équivalente à une matrice diagonale

Exercice n°1

Calculer les produits AB et BA lorsque c'est possible :

1)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}$

2)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$

Exercice n°2

A l'aide de la méthode de Gauss-Jordan, montrer que $M = \begin{pmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 3 & 1 \\ 0 & -1 & -2 & -1 \end{pmatrix}$ est inversible et calculer son inverse.

Exercice n°3

Soient $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et U_n une suite de \mathbb{R}^2 vérifiant : $U_0 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ et $U_{n+1} = AU_n$ pour tout $n \in \mathbb{N}$

- 1) Montrer que *pour tout* $n \in \mathbb{N}$, $U_n = A^n U_0$
- 2) Préciser U_n en fonction de $n \in \mathbb{N}$

Exercice n°4: Soit
$$A = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$$

- 1) Calculer A^2 et vérifier qu'il existe (a,b) $\in \mathbb{R}^2$ tels que $A^2 = aA + bI_3$
- 2) Montrer que A est inversible et préciser son inverse .
- 3) Déterminer $(A-I_3)(A-2I_3)$, les matrices $A-I_3$ et $A-2I_3$ sont-elles inversibles ?

Problème : Soit
$$a \in \mathbb{R}$$
, on pose $M(a) = \begin{pmatrix} 1-2a & a & a \\ a & 1-2a & a \\ a & a & 1-2a \end{pmatrix}$ et $E = \{M(a) \in \mathcal{M}_3(\mathbb{R})\}$

- 1) Montrer que pour tous réels a,b le produit M(a)M(b) ∈E
- 2) En déduire toutes les valeurs de a pour lesquelles M(a) est inversible et exprimer alors son inverse.
- 3) Déterminer le réel a_0 non nul tel que $M(a_0)^2 = M(a_0)$
- 4) Soit $P = M(a_0)$ et $Q = I_3 P$
 - a) Montrer qu'il existe un unique réel α , que l'on exprimera en fonction de a, tel que : $M(a) = P + \alpha Q$
 - b) Exprimer P²,QP,PQ,Q²
 - c) Soit n un entier naturel non nul, exprimer $M(a)^n$ en fonction de a