Colle sur le chapitre n°22

« Probabilités»

En vrac: vrai ou faux?

- 1) Si A et B sont incompatibles alors ils sont indépendants
- 2) Si A, B et C sont des événements alors $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B \cap C)$
- 3) Si A et B sont des événements, alors $P(A \cap \overline{B}) = 1 P(A \cap B)$

Exercice n°1

Une compagnie d'assurance estime que ses clients se divisent en deux catégories : les clients enclins aux accidents, représentant 20% de la population, et ceux qui ont peu d'accidents.

La probabilité d'avoir au moins un accident par an est 0,5 pour les personnes de la première et 0,1 pour la seconde. Quelle est la probabilité qu'un nouvel assuré soit victime d'un accident pendant l'année qui suit la signature de son contrat?

Exercice n°2

On tire une carte au hasard dans un jeu de 52 cartes. On note D l'événement « la carte tirée est une dame » Etudier l'indépendance de l'événement D avec :

- 1) « La carte tirée est un pique »
- 2) « La carte n'est pas un as »

Exercice n°3

On joue à pile ou face avec une pièce non équilibrée. A chaque lancer, la probabilité d'obtenir pile est $\frac{2}{3}$

Les lancers sont supposés indépendants. Pour $n \ge 1$, on note A_n l'événement « Après le nième lancer, on a obtenu pour la première fois deux piles consécutifs » et p_n la probabilité de A_n

- 1) Déterminer p_1 , p_2 et p_3
- 2) Montrer que pour $n \ge 4$, $p_n = \frac{2}{9}p_{n-2} + \frac{1}{3}p_{n-1}$
- 3) En déduire l'expression de p_n pour n supérieur à 1
- 4) Calculer $\sum_{n=1}^{+\infty} p_n$ et interpréter

Problème:

Une puce effectue des sauts aléatoires sur les sommets d'un triangle ABC. A chaque saut, elle peut soit sauter sur place avec la probabilité p, soit sauter vers un des deux autres sommets avec la probabilité q.

On suppose que la puce est initialement placée en A. Soit $n \in \mathbb{N}$, on note A_n respectivement B_n et C_n les événements « Après le nième saut, la puce est au point A, respectivement B,C » et a_n , b_n , c_n les probabilités respectives.

- 1) Déterminer une relation entre p et q
- 2) Démontrer que $q \in [0, \frac{1}{2}]$
- 3) Justifier que $a_{n+1} = (1 2q)a_n + qb_n + qc_n$
- 4) Déterminer une relation similaire pour b_n et pour c_n
- 5) Déterminer une relation sur la sur le de le que : $\begin{pmatrix} \bar{a}_{n+1} \\ b_{n+1} \\ c_{n+1} \end{pmatrix} = M \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$
- 6) Exprimer M sous la forme d'une somme faisant intervenir I_3 et une matrice U à déterminer
- 7) Déterminer M^n
- 8) En déduire les expressions de a_n , b_n , c_n , faire tendre n vers l'infini et interpréter.

Première année classe préparatoire INP des Hauts-de-France, lycée Fénelon Cambrai, M. Calciano