Colle sur le chapitre n°10

« Suites »

En vrac: vrai ou faux?

- 1) Une suite de termes strictement positifs et tendant vers 0 est décroissante à partir d'un certain rang.
- 2) Si $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$, alors $\lim_{n \to +\infty} \frac{e^{u_n}}{e^{v_n}} = 1$
- 3) Une suite croissante et majorée par 2 converge vers 2
- 4) Une suite (u_n) est convergente ssi $\lim_{n\to+\infty} (u_{n+1}-u_n)=0$

Exercice n°1

Soit $\theta \in \mathbb{R}$, pour $n \in \mathbb{N}$, on pose $u_n = \cos(n\theta)$, on suppose que la suite (u_n) est convergente.

- 1) A l'aide des suites (u_{2n}) et (u_{3n}) , montrer que $\lim_{n\to\infty} u_n = 1$
- 2) Montrer que $\lim_{n\to\infty} \sin(n\theta) = 0$ puis que $\cos(\theta) = 1$
- 3) Que dire de la suite (u_n)

Exercice n°2

Soit (u_n) la suite définie par $u_0=0$ et $\forall n\in\mathbb{N}, u_{n+1}=\sqrt{2+u_n}$

- 1) Montrer que : $\forall n \in \mathbb{N}, 0 \le u_n \le 2$
- 2) Montrer que (u_n) est croissante et converge vers 2

Exercice n°3

Soit une suite réelle (u_n) telle que $u_0 < 0$ et $\forall n \in \mathbb{N}, u_n = u_{n+1} - u_{n+1}^2$

Que peut-on dire de cette suite?

Problème:

Pour tout entier n supérieur ou égal à 1, on définit la fonction f_n par : $\forall x \in \mathbb{R}^+$, $f_n(x) = x^n + 9x^2 - 4$

- 1) Montrer que l'équation $f_n(x)=0$ n'a qu'une seule solution strictement positive, notée u_n
- 2) Calculer u₁ et u₂
- 3) Vérifier que $\forall n \in \mathbb{N}^*$, $u_n \in]0,\frac{2}{3}[$
- 4) Montrer que : $\forall x \in]0,1[$, on $f_{n+1}(x) < f_n(x)$
- 5) En déduire le signe de $f_n(u_{n+1})$, puis les variations de u_n
- 6) Montrer que la suite (u_n) est convergente, on note L cette limite.
- 7) Déterminer la limite de $(u_n)^n$ lorsque n tend vers $+\infty$
- 8) Donner enfin la valeur de L