DS 1 (suite de fonctions)

La calculatrice est interdite. L'usage du téléphone portable et de tout objet connecté est prohibé

Exercice n°1 (sur 5 points)

Pour $n \in \mathbb{N}^*$, on définit sur [0,1], la fonction $G_n: t \to (1-\frac{t}{n})^n e^t$

- 1) Démontrer que : $\forall (n, t) \in \mathbb{N}^* \times [0,1], |G_n'(t)| \leq \frac{e^t}{n}$
- 2) En déduire que : $\forall (n,t) \in \mathbb{N}^* \times [0,1], |G_n(t)-1| \leq \frac{te^t}{n}$
- 3) On définit pour $n \in \mathbb{N}^*$, et pour $x \in [0,1]$, $I_n(x) = \int_0^x (1 \frac{t}{n})^n e^t dt$
- 4) Montrer que la suite de fonctions (I_n) converge simplement sur [0,1]
- 5) La convergence est-elle uniforme sur [0,1]?

Exercice n°2 (sur 4 points)

Pour $x \in [0, \frac{\pi}{2}]$, on pose $f_n: x \to nsin(x)cos^n(x)$

- 1) Déterminer la limite simple de (f_n)
- 2) Calculer $I_n = \int_0^{\frac{\pi}{2}} f_n(x) dx$
- 3) La suite (f_n) converge-t-elle uniformément ?
- 4) Justifier qu'il y a convergence uniforme sur tout segment inclus dans $]0, \frac{\pi}{2}]$

Exercice n°3 (sur 4 points)

Soit (f_n) définies par : $\forall x \in [0,1], f_n(x) = \frac{n^2 x^2}{1 + n^3 x^3}$

- 1) Montrer que les conditions d'application du théorème sur la dérivation des f_n ne sont pas vérifiées.
- 2) A-t-on $(\lim_{n\to+\infty} f_n)'(x) = \lim_{n\to+\infty} f_n'(x)$?

Exercice n°4 (sur 3 points)

Soit $f_n: \mathbb{R}^+ \to \mathbb{R}$ définie par $f_n(x) = x + \frac{1}{n}$

Montrer que la suite (f_n) converge uniformément mais pas $(f_n^{\ 2})$

Exercice n°5 (sur 2 points)

On pose $f_n(x) = x^2 \sin(\frac{1}{nx})$ pour $x \in \mathbb{R}^*$ et $f_n(0) = 0$

Etudier la convergence uniforme de (f_n) sur $\mathbb R$ puis sur [-a,a] avec a>0

Exercice n°6 (sur 2 points)

Soit P_n une suite de polynômes de $\mathbb{R}[X]$ convergeant uniformément sur \mathbb{R} vers f.

Montrer que f est polynomiale.

Deuxième année classe préparatoire INP des Hauts-de-France, lycée Fénelon Cambrai, M. Calciano