Forces intermoléculaires

Exercice 1: Application directe du cours (QCM)

- 1. Entre le méthane CH₄ et le bromométhane CH₃Br, quelle interaction de VAN DER WAALS ne se développe pas ?
 - a. Interaction de Keesom
 - b. Interaction de Debye
 - c. Interaction de London
- 2. Quel est l'ordre de grandeur de l'énergie d'une interaction de VAN DER WAALS?
 - a. Quelques kJ/mol
 - b. Quelques 10 kJ/mol
 - c. Quelques 100 kJ/mol
- 3. Il peut se développer une liaison hydrogène entre le méthane CH₄ et l'eau H₂O.
 - a. Vrai
 - b. Faux
- 4. Il peut se développer une liaison hydrogène entre l'ammoniac NH₃ et l'eau H₂O.
 - a. Vrai
 - b. Faux
- 5. Dans la série HCl, HBr, HI, quelle est a priori la molécule la plus polarisable ?
 - a. HCl
 - b. HBr
 - c. HI
- 6. La cyclohexanone est un solvant :
 - a. Polaire, protique
 - b. Polaire, aprotique
 - c. Apolaire
- 7. L'eau est un solvant :
 - a. Polaire, protique
 - b. Polaire, aprotique
 - c. Apolaire
- 8. Le benzène est un solvant :
 - d. Polaire, protique
 - e. Polaire, aprotique
 - f. Apolaire

Exercice 2 : forces intermoléculaires et point d'ébullition

1. Parmi les molécules suivantes, lesquelles sont polaires ?

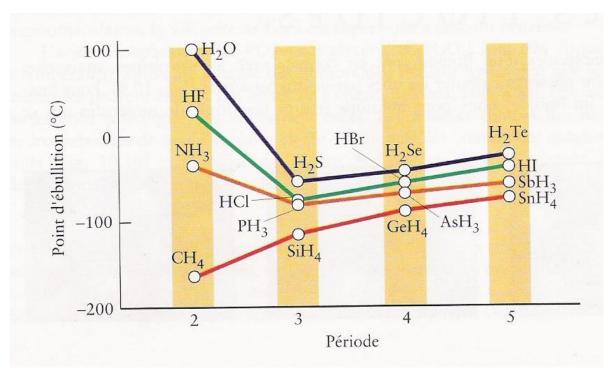
 $H_2O \quad CO_2 \quad CH_4 \quad N_2 \quad CO \quad NH_3$

Quelle molécule aura le point d'ébullition le plus élevé : Br2 ou ICI ?

2. On donne les points d'ébullition des gaz nobles :

Gaz noble	He	Ne	Ar	Kr	Xe	Rn
Point d'ébullition (°C)	-269	-246	-186	-153	-108	-62

Quel type d'interaction existe-t-il entre des atomes de gaz nobles ? Commenter l'évolution des points d'ébullition. 3. L'évolution de la température d'ébullition des alcanes est la suivante :


Alcanes	méthane	éthane	propane	Butane
Point d'ébullition (°C)	-161.4	-88.6	-42.2	-0.4

Interpréter cette évolution.

- 4. Le 1-chloropropane a une température d'ébullition de 46°C. Comparer avec le propane, et interpréter.
- 5. Le propan-1-ol a une température d'ébullition de 97.4° C. Interpréter.
- 6. L'éthanol, C₂H₅OH et l'éther méthylique CH₃OCH₃ ont la même masse molaire. Cela signifie-t-il qu'ils ont le même point d'ébullition ? Expliquer.
- 7. Le pentane et le 2,2-diméthyle propane ont tous deux la même formule brute C₅H₁₂, cependant ils ont des points d'ébullition différents : respectivement 36°C et 10°C. Pourquoi ?

Exercice 3 : Evolution des températures d'ébullition dans la classification périodique

Le graphique ci-dessous présente les points d'ébullition des composés hydrogénés de la plupart des éléments du bloc p de la classification périodique :

- 1. Interpréter l'évolution dans une colonne.
- 2. Interpréter l'évolution dans une ligne. On peut distinguer 3 anomalies. Lesquelles ? Comment les expliquer ?

Exercice 4: Rôle des liaisons hydrogène dans les interactions eau-soluté

La solubilité d'une espèce chimique dans un solvant peut être définie comme la masse maximale de soluté pouvant être dissoute par litre de solution. Elle s'exprime en $g \cdot L^{-1}$. On s'intéresse à la solubilité dans l'eau d'une série de composés présentant un squelette carboné en C5 :

Espèce	acide pentanoïque	pentanal	pentan-1-ol	pentane
Solubilité dans l'eau (g·L-1)	40,0	11,7	22,0	$38,0 \cdot 10^{-3}$

- 1. Représenter les composés présentés dans le tableau de données.
- 2. Expliquer cette série de données expérimentales.

Exercice 5 : Solubilité de quelques gaz dans l'eau

Le tableau ci-dessous indique la solubilité de différents gaz dans l'eau à 20 °C à la pression atmosphérique :

Gaz	H_2	CH_4	C_2H_6
Solubilité (g·L ⁻¹)	$8,0 \cdot 10^{-4}$	$1,5 \cdot 10^{-3}$	$2,0 \cdot 10^{-3}$

1. Interpréter ces résultats.

On considère deux autres gaz : le dioxyde de carbone CO2 et le dioxyde de soufre SO2 :

Gaz	CO_2	SO_2	
Solubilité (g·L ⁻¹)	$3,8 \cdot 10^{-2}$	1,8	

2. Interpréter ces résultats.

La solubilité du gaz ammoniac NH₃ dans l'eau est de 529 g · L-1.

3. Justifier cette valeur extrêmement élevée par rapport à la solubilité des autres gaz mentionnés précédemment.

À 0 °C, la solubilité du dioxygène O2 dans l'eau est de 1,5 · 10⁻² g · L⁻¹ tandis que celle de l'ozone O3 est de 1,0 g · L⁻¹.

4. Expliquer cette différence de solubilité.

Exercice 6 : Solubilité du diiode dans l'eau

Le tableau ci-dessous indique la solubilité du diiode l₂ dans différents solvants à 20 °C:

Solvant	eau H_2O	éther diéthylique CH_3OCH_3	tétrachlorométhane $CC\ell_4$
Solubilité (g·L ⁻¹)	0,3	180	41

- 1. Pour chaque solvant, identifier les interactions pouvant avoir lieu avec le diiode.
- 2. Expliquer les différences de solubilité observées.

En présence d'ions iodure l⁻, le diiode forme des ions triiodure l³⁻. La solubilité des ions triiodure dans l'eau est très largement supérieure à celle du diiode.

- 3. Proposer une représentation de Lewis pour l'ion triiodure, puis donner sa structure dans le modèle VSEPR.
- 4. Justifier la solubilité très importante des ions triiodure dans l'eau.

Exercice 7: Résolution de problème: acide fumarique et maléique

L'acide fumarique et l'acide maléique sont deux **stéréoisomères** : ils ont la même formule brute mais également la même formule semi développée HOOC-CH=CH-COOH. La différence entre deux stéréoisomères vient de leur configuration dans l'espace :

Cette simple différence de configuration conduit à une différence importante de propriétés physiques. Notamment les températures de fusion de ces deux espèces sont les suivantes :

T_{fus} (acide fumarique) = 287 °C

T_{fus} (acide maléique) = 131 °C

Interpréter ce fait d'expérience.