8.1 Décomposition thermique de l'éthanal (★)

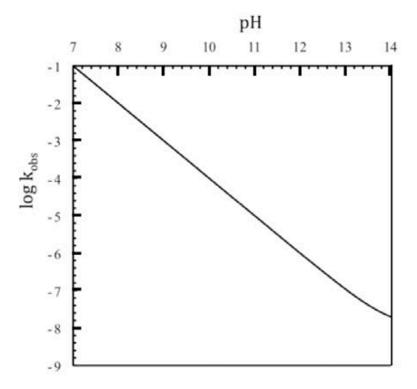
L'éthanal peut subir une décomposition thermique en phase gazeuse pour fournir du monoxyde de carbone et du méthane, suivant l'équation bilan :

$$CH_3CHO(g) = CO(g) + CH_4(g).$$

Le mécanisme probable de cette réaction est le suivant :

- 1. Ce mécanisme est-il en séquence ouverte ou en séquence fermée?
- **2.** Donner l'expression de la vitesse de formation du méthane CH_4 en fonction des concentrations des réactifs et produits, dans le cadre d'une approximation classique. On pourra noter l'éthanal E afin d'alléger les notations.

8.2 Décomposition de l'ion borohydrure (CCINP) (★)


Le tétrahydruroborate de sodium NaBH₄, aussi appelé borohydrure de sodium, est un solide blanc, utilisé notamment dans l'industrie pharmaceutique en tant qu'agent réducteur source d'ions hydrure H⁻ mais également dans les systèmes expérimentaux de pile à combustible comme source de dihydrogène, carburant de moteurs à combustion. La cinétique de décomposition dans l'eau des anions borohydrure BH₄⁻ suit une loi de pseudo-premier ordre, avec une constante cinétique $k_{\rm obs}$ qui dépend de la concentration en ions H₃O⁺ supposée fixée dans les conditions de l'expérience. L'évolution de $\log k$ en fonction du pH est représentée ci-dessous, k étant exprimée en s⁻¹.

- **1.** Proposer, à l'aide de la courbe représentée, une valeur pour l'ordre partiel par rapport aux ions H_3O^+ pour un pH compris entre 7 et 13.
- **2.** Établir l'expression de l'évolution de la concentration en ions BH_4^- en fonction du temps t. Quelle est la valeur du temps de demi-réaction pour pH = 7 d'une part et pour pH = 14 d'autre part? Conclure.

Plusieurs mécanismes de la réaction d'hydrolyse de NaBH₄ ont été proposés parmi lesquels le mécanisme suivant en trois étapes :

La contribution de l'eau à la vitesse est incluse dans les constantes

3. Établir la loi de vitesse d'apparition de H₃BO₃ à partir du mécanisme réactionnel proposé en appliquant l'approximation des états stationnaires à BH₅ et BH₃. Commenter.

8.3 Pyrolyse d'un peroxyde (★)

En phase gazeuse, le peroxyde de *tert*-butyle se décompose en éthane et en propanone selon la réaction d'équation bilan :

$$(CH_3)_3C-O-O-C(CH_3)_3 = CH_3CH_3 + 2CH_3-CO-CH_3.$$

Le mécanisme réactionnel suivant a été proposé :

Pour alléger les notations, on pourra noter R le groupe $(CH_3)_3C$.

- 1. Ce mécanisme est-il un processus en séquence ouverte ou en séquence fermée (justifier)?
- **2.** Définir la vitesse de disparition du peroxyde et celle de formation de l'éthane CH₃CH₃. Ces vitesses sont-elles égales ?
- **3.** La vitesse r de la réaction est définie comme la vitesse de formation de l'éthane. Donner l'expression de r en fonction des concentrations des réactif et produits, dans le cadre d'une approximation classique. Quelle est l'étape cinétiquement déterminante si l'approximation précédente est valide?

8.4 Couplage diazoïque en solution aqueuse (★)

Dans cet exercice, on étudie la réaction de l'ion phényldiazonium, dont la structure ne sera pas précisée, noté A^+ , avec la méthylaniline, notée B, pour conduire au produit P. Le mécanisme réactionnel est précisé ci-dessous :

$$A^+$$
 + B $\xrightarrow{k_1}$ D^+ constante de vitesse k_1 D^+ $\xrightarrow{k_{-1}}$ A^+ + B constante de vitesse k_{-1} D^+ + H_2O $\xrightarrow{k_2}$ P + H_3O^+ constante de vitesse k_2

 D^+ est un intermédiaire réactionnel très peu stable. Montrer que le mécanisme ci-dessus permet de retrouver la loi de vitesse constatée expérimentalement :

$$r = \frac{\mathrm{d}P}{\mathrm{d}t} = k[A^+][B]$$

moyennant une hypothèse que l'on justifiera. Expliciter k en fonction de k_1 , k_{-1} et k_2 .

8.5 Étude d'une substitution nucléophile aromatique (Centrale-Supélec) (★★)

La réaction étudiée est la substitution nucléophile aromatique du fluor par la pipéridine, notée *Pip*, sur le 2-fluoro-5-nitrobenzonitrile *3* dans le chloroforme à 25 °C. L'équation modélisant la substitution est donnée :

Cette réaction de substitution procède par un mécanisme d'addition-élimination. Deux voies compétitives entrent simultanément en jeu : la première (voie A) ne fait pas intervenir le catalyseur HP (2-hydroxypyridine), contrairement à la deuxième (voie B). Les constantes de vitesses k_i correspondent aux différents actes élémentaires dont les molécularités sont indiquées. IR représente un intermédiaire réactionnel.

$$IR + \bigcap_{N \to OH} HP \xrightarrow{k_3} O_2N \xrightarrow{K_{-1}} IR$$

- **1.** Proposer une structure pour l'intermédiaire réactionnel *IR*, commun aux deux mécanismes et obtenu par addition nucléophile de la pipéridine *Pip* sur le 2-fluoro-5-nitrobenzonitrile 3. Expliquer pourquoi les substituants -CN et -NO₂ favorisent cette addition : on pourra écrire quelques formules limites explicites de cet intermédiaire pour argumenter.
- **2.** Montrer que, moyennant certaines hypothèses, la vitesse de cette réaction s'exprime sous la forme $v = k_{\rm app}[3][Pip]$. On appliquera notamment l'approximation de l'état stationnaire à l'intermédiaire IR pour les deux mécanismes et on exprimera $k_{\rm app}$ en fonction des constantes de vitesse et de [HP], la concentration en catalyseur bifonctionnel HP.
- **3.** Montrer que, selon les valeurs du rapport $k_{-1}/(k_2 + k_3[HP])$, le catalyseur HP est efficace ou pas.
- **4.** Expliquer comment le tracé du graphe $k_{\rm app} = f([HP])$ permet d'accéder à l'efficacité du catalyseur, c'est-à-dire au rapport k_3/k_2 .

8.6 Influence du pH sur la vitesse d'une réaction (★★)

On étudie l'influence du pH sur la vitesse de la réaction présentée à l'exercice **8.4**. Le mécanisme proposé est complété par les réactions acido-basiques suivantes :

$$BH^+$$
 + H_2O = B + H_3O^+ constante d'équilibre K_A
 A^+ + OH^- = AOH constante d'équilibre K_n
 $2 H_2O$ = H_3O^+ + OH^- constante d'équilibre K_e

Les espèces BH^+ et AOH sont totalement inertes vis-à-vis de toute réaction de couplage. On rappelle que la vitesse de la réaction de couplage s'écrit :

$$r = \frac{\mathrm{d}P}{\mathrm{d}t} = k[A^+][B].$$

- **1.** Montrer qualitativement que la vitesse de réaction doit passer par un maximum pour une certaine valeur de pH.
- **2.** La concentration en ions oxonium H_3O^+ , notée h, est fixée par emploi d'une solution tampon (voir chapitre 10 Équilibres acido-basiques Titrages). Le mélange réactionnel est préparé en introduisant, pour un litre de solution aqueuse de pH fixé, une concentration c_0 en ion diazonium A^+ et une concentration c_0 en diméthylaniline B.
- a. Montrer que la vitesse initiale de la réaction, notée r_0 peut se mettre sous la forme :

$$r_0 = k_{\rm obs} c_0^2$$

où $k_{\rm obs}$ est une fonction de h que l'on explicitera.

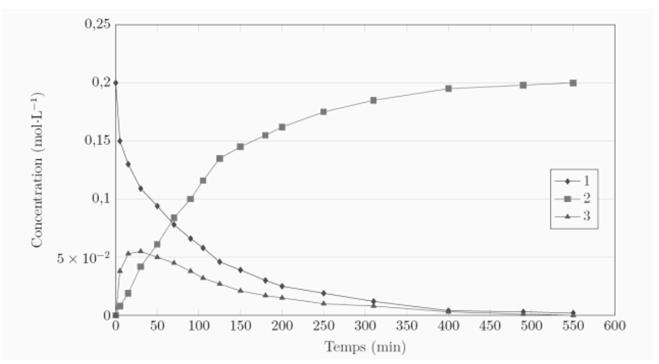
b. Montrer que $k_{\rm obs}$ est maximale pour une certaine valeur du pH que l'on exprimera en fonction des diverses constantes d'équilibre.

8.7 Contrôle cinétique/contrôle thermodynamique (Centrale-Supélec) (★★)

Le 3-sulfolène est obtenu en faisant réagir du butadiène avec du dioxyde de soufre. On propose dans cette partie d'étudier les aspects cinétiques de cette réaction.

$$+ SO_2 \Longrightarrow \mathbb{S}_{O}^{O}$$

On trouve dans la littérature scientifique diverses études portant sur des réactions analogues à cette réaction. Des résultats expérimentaux relatifs à une réaction analogue utilisant un composé avec un motif butadiène (composé A) sont présentés ci-dessous.


Un composé avec un motif butadiène (composé A) réagissant avec du dioxyde de soufre peut conduire aux deux composés suivants :

- un composé de type sulfolène (composé B) issu d'une réaction dite chélotropique entre le motif butadiène et le dioxyde de soufre,
- un composé de type sultine (composé C) issu d'une cycloaddition entre le dioxyde de soufre et le motif butadiène.

MONNAT et *al.* ont étudié l'influence de la température sur la composition de milieu réactionnel en fin de réaction. On trouve dans leur article l'information suivante :

150 mg de dioxyde de soufre et 40 mg de composé A sont dissous dans 0,3 mL d'un mélange de CD_2Cl_2 et de $CFCl_3$ en proportion 4 : 1. L'ensemble est placé à $-75\,^{\circ}C$. Au bout de 8 h, une analyse RMN montre que les composés B et C sont présents avec un rapport B : C égal à 4 : 96. Lorsque ce mélange est réchauffé à $-40\,^{\circ}C$, le composé C est converti en B qui reste donc le seul composé présent dans le milieu réactionnel.

T. Fernandez et *al.* ont suivi par RMN l'évolution temporelle du milieu réactionnel en travaillant à une température fixée à 261 K. Ils ont obtenu les résultats suivants.

- **1.** Déterminer quel produit est majoritaire sous contrôle cinétique et quel produit est majoritaire sous contrôle thermodynamique.
- **2.** Attribuer les courbes d'évolution temporelle de la figure précédente aux composés A, B et C.

8.8 Décomposition de l'urée en solution (★★)

En solution aqueuse, l'urée est susceptible de se décomposer en carbonate d'ammonium selon la réaction :

$$(H_2N)_2CO + 2H_2O = 2NH_4^+ + CO_3^{2-}.$$

- 1. Définir la vitesse de décomposition de l'urée.
- **2.** En solution diluée, la constante de vitesse de la réaction, à 350 K, est $k = 4,00.10^{-5}$ s⁻¹. Quelle information permet d'en déduire que la réaction est d'ordre un?
- 3. Calculer la durée nécessaire pour décomposer 80 % de l'urée à 350 K.
- **4.** L'énergie d'activation de la réaction est $E_a = 166 \text{ kJ} \cdot \text{mol}^{-1}$. En supposant cette grandeur indépendante de la température, calculer la constante de vitesse de la réaction à 300 K et la durée nécessaire pour décomposer 80 % de l'urée à cette température. Ce dernier résultat est-il compatible avec celui de la question **2**?
- **5.** En présence d'enzyme, la constante de vitesse de décomposition de l'urée à 300 K devient $k' = 3.00.10^4 \text{ s}^{-1}$.

Quel est le rôle de l'uréase dans la réaction?

6. Calculer la valeur de E'_a , énergie d'activation de la réaction en présence d'uréase (on considère que le facteur de fréquence de la réaction est le même qu'en l'absence d'uréase).

Données : $R = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

8.9 Oxydation des ions hydrogénosulfite (E3A) (★★)

On se propose d'étudier la cinétique de la réaction d'oxydation des ions HSO_3^- en ions sulfate SO_4^{2-} par le dioxygène dissous en présence d'ions Fe^{3+} selon l'équation :

$$HSO_3^-$$
 (aq) + $\frac{1}{2}O_2$ (aq) = H^+ (aq) + SO_4^{2-} (aq).

Des expériences menées en laboratoire et reconstituant le milieu naturel ont permis de proposer un mécanisme complexe dont certaines étapes sont proposées ci-dessous. On se place à $25\,^{\circ}$ C et sous une pression atmosphérique de 1 bar. Toutes les espèces sont dissoutes dans l'eau y compris O_2 .

Pour cette dernière étape, la contribution de l'eau à la vitesse est incluse dans la constante k_5 .

- 1. Justifier que l'approximation de l'état stationnaire (AES) soit applicable au radical $SO_5^{\bullet-}$.
- **2.** En appliquant l'AES à l'ion $S_2O_6^{2-}$ et aux radicaux $SO_3^{\bullet-}$ et $SO_5^{\bullet-}$, exprimer la vitesse volumique de la réaction (vitesse d'apparition en ions sulfate SO_4^{2-}) en fonction des concentrations $[O_2]$, $[HSO_3^-]$, $[H^+]$, $[Fe^{2+}]$ et $[Fe^{3+}]$ et des constantes de vitesse.
- **3.** Lorsque la concentration en ions ferreux $[Fe^{2+}]$ devient très faible, montrer que l'expression de la vitesse v est indépendante de la concentration en dioxygène dissous.

8.10 Cinétique enzymatique (CAPES) (★★★)

Le dépeçage du poisson comme le thon est une opération difficile qui peut être rendue plus aisée grâce à des enzymes : les peptidases. Placé dans un bain tiède d'un mélange de peptidases pendant quelques minutes, la peau peut être retirée presque intégralement avec de simples jets d'eau. La papaïne E est une peptidase dont l'action sur un substrat S peut être modélisée par le schéma suivant.

$$E$$
 + S \rightleftharpoons ES équilibre rapide constante d'équilibre K_8

$$ES \xrightarrow{k_2} ES' + P_1$$

$$ES' \xrightarrow{k_3} E + P_2$$

- 1. Appliquer l'approximation des états stationnaires à l'espèce ES' et en déduire une relation entre les concentrations [ES], [ES'] et les constantes de vitesse k_2 et k_3 .
- **2.** On note $[E]_0$ la concentration initiale de l'enzyme et v désigne la vitesse de formation du produit P_2 .
 - a) Indiquer la relation simple qui lie à chaque instant les concentrations $[E]_0$, [E], [ES] et [ES']
 - b) Calculer [ES] en fonction de $[E]_0$, [S], K_s , k_2 et k_3 .
 - c) Montrer que la vitesse v s'exprime par la relation de MICHAELIS-MENTEN : $v = \frac{A \times [S]}{B + [S]}$ avec A et B des constantes qui s'expriment en fonction de k_2 , k_3 , K_s , $[E]_0$. Donner les expressions de A et B.
- **3.** Lorsque la concentration en substrat est très élevée ($[S] \gg B$), la vitesse de formation du produit tend vers une valeur limite v_{max} . Exprimer v_{max} en fonction de constantes.

L'étude expérimentale fournit une valeur de la vitesse pour différentes valeurs de la concentration en substrat. Un tracé de l'inverse de la vitesse $(1/\nu)$ permet d'accéder facilement aux valeurs de A et B.

- **4.** Proposer précisément le tracé permettant d'exploiter les données et d'accéder aux valeurs de *A* et *B*.
- **5.** On obtient $B = 2,62 \text{ mol} \cdot \text{L}^{-1}$, $A/[E]_0 = 0,0960 \text{ s}^{-1}$ et $[E]_0/[ES'] = 2,44$ dans les conditions de saturation de substrat ([S] grand). Calculer les valeurs de k_2 , k_3 et K_s .

8.11 Monochloration de l'éthane (d'après Centrale-Supélec) (★)

La monochloration de l'éthane est une réaction totale dont le bilan s'écrit

$$C_2H_6(g) + Cl_2(g) = C_2H_5Cl(g) + HCl(g).$$

Cette réaction a été étudiée à température et volume constants, pour lesquels tous les constituants sont gazeux.

1. Exprimer la vitesse de réaction par rapport aux réactifs et aux produits (sous forme de dérivées).

On a montré expérimentalement que cette réaction, de constante de vitesse k, admet un ordre a par rapport au dichlore et b par rapport à l'éthane.

2. Écrire l'équation de la vitesse de réaction, faisant notamment intervenir k, a et b. Le mécanisme proposé est le suivant.

- **3.** Exprimer la vitesse de la réaction en fonction des constantes de vitesse k_i et des concentrations des réactifs C_2H_6 et Cl_2 . Donner la relation liant k aux constantes de vitesse k_i .
- **4.** Quelle est l'unité de la constante *k* ?
- **5.** Exprimer l'énergie d'activation E_a de la chloration de l'éthane en fonction des énergies d'activations E_a^i relatives à chacun des actes élémentaires.