8.1 Décomposition thermique de l'éthanal

1. Nature du mécanisme

Le radical méthyle CH_3^{\bullet} est un produit de la troisième étape, et un réactif dans l'étape 2. Par conséquent, le mécanisme est en séquence fermée.

2. Vitesse de formation du méthane

Par définition, $r_{\text{form}} = \frac{d[\text{CH}_4]}{dt}$. Selon le mécanisme, le méthane n'apparaît que comme produit dans l'étape 2. Par conséquent,

$$\frac{\mathrm{d}[\mathrm{CH}_4]}{\mathrm{d}t} = r_2 = k_2[\mathrm{CH}_3^{\bullet}][E] \tag{8.16}$$

équation dont on souhaite éliminer $[CH_3^{\bullet}]$. En appliquant l'AES aux intermédiaires réactionnels, on a :

$$\frac{\mathrm{d}[\mathrm{CH}_3^{\bullet}]}{\mathrm{d}t} = r_1 - r_2 + r_3 - 2r_4 \approx 0 \quad \text{et} \quad \frac{\mathrm{d}[{}^{\bullet}\mathrm{CH}_2\mathrm{CHO}]}{\mathrm{d}t} = r_2 - r_3 \approx 0.$$

Par sommation des deux équations précédentes, on a $r_1 = 2r_4$, c'est-à-dire : $k_1[E] = 2k_4[\text{CH}_3^{\bullet}]^2$. En reportant cette expression dans l'équation (8.16), on en déduit : $\frac{\text{d}[\text{CH}_4]}{\text{d}t} = k_2 \sqrt{\frac{k_1}{2k_4}} [\text{CH}_3\text{CHO}]^{\frac{3}{2}}$.

8.2 Décomposition de l'ion borohydrure

1. La constante $k_{\rm obs}$ s'écrit $k[{\rm H_3O^+}]^{\alpha}$ avec α l'ordre partiel par rapport aux ions oxonium. Ainsi $\log k_{\rm obs} = \log k - \alpha {\rm pH}$. En utilisant l'évolution fournie on déduit que $\alpha = 1$ entre pH = 7 et pH = 13.

2. La vitesse de la réaction s'écrit : $v = k_{\rm obs}[{\rm BH}_4^-] = -\frac{{\rm d}[{\rm BH}_4^-]}{{\rm d}t}$. L'intégration de cette équation différentielle conduit à : $[{\rm BH}_4^-] = [{\rm BH}_4^-]_0 \exp(-k_{\rm obs}t)$ avec $[{\rm BH}_4^-]_0$ la concentration initiale en ions borohydrure.

Le temps de demi-réaction $t_{1/2}$ correspond au temps au bout duquel la concentration en ions borohydrure a été divisée par 2. Il vient ainsi :

$$t_{1/2} = \ln 2/k_{\rm obs}.$$

Application numérique : pour pH égal à 7, $k_{obs} = 10^{-1} \text{ s}^{-1}$ et $t_{1/2} = 6.9 \text{ s}$.

Pour pH égal à 14,
$$k_{\text{obs}} = 10^{-7.6} \text{ s}^{-1}$$
 et $t_{1/2} = 2.8.10^7 \text{ s}$.

La dégradation de l'ion borohydrure est très lente à pH égal à 14.

3. La loi de vitesse d'apparition de H_3BO_3 s'écrit $v = k_3[BH_3]$ (la contribution de l'eau est contenue dans le constante de vitesse k_3).

Application de l'AES à BH₃ :
$$\frac{\mathrm{d[BH_3]}}{\mathrm{d}t} = 0 = k_2[\mathrm{BH_5}] - k_3[\mathrm{BH_3}].$$

 $\text{Application de l'AES à BH}_5: \frac{\mathrm{d}[\mathrm{BH}_5]}{\mathrm{d}t} = 0 = k_1[\mathrm{H}_3\mathrm{O}^+][\mathrm{BH}_4^-] - k_{-1}[\mathrm{BH}_5] - k_2[\mathrm{BH}_5].$

Il vient ainsi :
$$v = k_2[BH_5] = \frac{k_1k_2[H_3O^+][BH_4^-]}{k_2 + k_{-1}}.$$

Le mécanisme proposé explique l'ordre partiel égal à 1 par rapport aux ions oxonium et l'ordre partiel égal à 1 par rapport aux ions borohydrure.

8.3 Pyrolyse d'un peroxyde

1. Type de séquence

Pour cette séquence, aucun des composés qui apparaissent comme produit d'une étape n'est aussi réactif d'une étape qui précède. Il s'agit donc d'un processus en séquence ouverte.

2. Définition des vitesses

Par définition:

$$r_{\rm disp} = -\frac{{
m d}[ROOR]}{{
m d}t}$$

et:

$$r_{\text{form}} = \frac{d[\text{CH}_3 - \text{CH}_3]}{dt}$$

Ces vitesses ne sont pas rigoureusement égales. En effet, par conservation de l'élément carbone, on a :

$$8[ROOR] + 4[RO^{\bullet}] + 3[CH_3 - CO - CH_3] + [CH_3^{\bullet}] + 2[CH_3 - CH_3] = 8[ROOR]_0$$

qui conduit par dérivation à :

$$8\frac{\mathrm{d}[ROOR]}{\mathrm{d}t} + 4\frac{\mathrm{d}[RO^{\bullet}]}{\mathrm{d}t} + 3\frac{\mathrm{d}[CH_3 - CO - CH_3]}{\mathrm{d}t} + \frac{\mathrm{d}[CH_3^{\bullet}]}{\mathrm{d}t} + 2\frac{\mathrm{d}[CH_3 - CH_3]}{\mathrm{d}t} = 0.$$

3. Loi de vitesse et étape cinétiquement déterminante

Suivant la définition choisie, $r = r_{\text{form}} = r_3$. En appliquant l'AES aux intermédiaires réactionnels :

$$\frac{\mathrm{d}[\mathrm{CH}_3^{\bullet}]}{\mathrm{d}t} = r_2 - 2r_3 \approx 0$$

et:

$$\frac{\mathrm{d}[RO^{\bullet}]}{\mathrm{d}t} = 2r_1 - r_2 \approx 0.$$

On extrait de ce système $r_3 = r_1$, et par conséquent : $r = k_1[OOR]$.

Dans le cadre de l'AES, la vitesse de la réaction ne dépend que de la première étape : c'est elle qui gouverne la cinétique du processus. La première étape est donc l'étape cinétiquement déterminante.

8.4 Couplage diazoïque en solution aqueuse

La vitesse de la réaction r s'exprime simplement en fonction de la troisième étape du mécanisme réactionnel :

$$r = k_2[D^+]$$

l'eau, solvant de la réaction n'apparaît pas dans la loi de vitesse. L'espèce D^+ est un intermédiaire de réaction instable : on lui applique le principe de l'état stationnaire :

$$\frac{\mathrm{d}[D^+]}{\mathrm{d}t} = 0 = k_1[A^+][B] - k_{-1}[D^+] - k_2[D^+]$$

ce qui conduit à l'expression de la concentration en intermédiaire D^+ :

$$[D^+] = \frac{k_1}{(k_{-1} + k_2)} [A^+] [B]$$

et donc à la vitesse de réaction :

$$r = \frac{k_1 k_2}{(k_{-1} + k_2)} [A^+] [B].$$

La constante *k* s'écrit donc :

$$k = \frac{k_1 k_2}{(k_{-1} + k_2)}.$$

8.5 Étude d'une substitution nucléophile aromatique

1. Le produit de l'addition nucléophile est proposé. Il bénéficie d'une stabilisation par délocalisation. Les groupements -CN et $-\text{NO}_2$ participent à cette stabilisation.

$$\begin{bmatrix} H_{N} & F_{C} & NI & H_{N} & F_{C} & NI \\ I\underline{O}^{N} & \underline{\overline{O}}I & I\underline{O}^{N} & \underline{\overline{O}}I & I\underline{O}^{N} & \underline{\overline{O}}I \\ I\underline{O}^{N} & \underline{\overline{O}}I & I\underline{O}^{N} & \underline{\overline{O}}I & I\underline{O}^{N} & \underline{\overline{O}}I \\ I\underline{O}^{N} & \underline{\overline{O}}I & I\underline{O}^{N} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I & I\underline{\overline{O}^{N}} & \underline{\overline{O}}I \\ I\underline{\overline{O}^{N}} & \underline{\overline{O}^{N}} & \underline{\overline{O$$

2. La vitesse de la réaction correspond à la vitesse de formation l'espèce 6, issue des deux mécanismes compétitifs. Il vient ainsi : $v = k_2[IR] + k_3[IR][HP]$.

L'application de l'AES à l'intermédiaire IR s'écrit :

$$\frac{\mathrm{d}[IR]}{\mathrm{d}t} \approx 0 = k_1[3][Pip] - k_{-1}[IR] - k_2[IR] - k_3[IR][HP].$$

Cette expression permet de calculer la concentration en intermédaire réactionnel sous la forme :

$$[IR] = \frac{k_1[3][Pip]}{k_{-1} + k_2 + k_3[HP]} \text{ et la vitesse } v : v = \frac{k_1(k_2 + k_3[HP])}{k_{-1} + k_2 + k_3[HP]}[3][Pip] = k_{app}[3][Pip].$$

3. La constante k_{app} peut s'écrire sous la forme : $k_{app} = \frac{k_1}{1 + \frac{k_{-1}}{k_2 + k_3[HP]}}$

Ainsi, si $1 \gg \frac{k_{-1}}{k_2 + k_3[HP]}$: $v \approx k_1[3][Pip]$. La vitesse est imposée par la formation de l'intermédiaire réactionnel et le catalyseur n'intervient pas.

Ainsi, si $1 \ll \frac{k_{-1}}{k_2 + k_3[HP]}$: $v \approx k_{app}[3][Pip]$ avec $k_{app} = \frac{k_1(k_2 + k_3[HP])}{k_{-1}}$. La vitesse est fonction de la concentration en catalyseur. Le catalyseur est efficace.

4. Le tracé du graphe $k_{\rm app}=f([HP])$ fournit une droite de coefficient directeur $a=\frac{k_1k_3}{k_{-1}}$ et d'ordonnée à l'origine $b=\frac{k_1k_2}{k_{-1}}$. L'efficacité du catalyseur définie par le rapport k_3/k_2 est égale à a/b.

8.6 Influence du pH sur la vitesse d'une réaction

- 1. En milieu acide, l'espèce A^+ est favorisée au détriment de AOH, inerte vis-à-vis de la réaction de couplage, ce qui est favorable à la vitesse de réaction. Cependant, le milieu acide favorise l'existence de l'espèce BH^+ inerte pour le couplage au détriment de B qui est l'espèce active. En milieu basique, les espèces B et AOH sont favorisées, l'une est active, l'autre pas. Il existe donc un pH optimal qui maximise le produit $[A^+][B]$.
- **2. a.** Il faut, pour chaque réactif, exprimer la relation qui existe entre la concentration initialement introduite et la concentration réelle en espèce active due à la protonation. Pour cela, on utilise la conservation de la matière couplée avec l'expression de l'équilibre acido-basique. Pour le réactif A^+ :

$$c_0 = [A^+] + [AOH]$$
 $K_n = \frac{[AOH]}{[A^+][OH^-]} = \frac{[AOH]}{[A^+]} \cdot \frac{h}{K_e}$

soit pour l'expression de la concentration de l'espèce active A^+ :

$$[A^+] = \frac{c_0}{\left(1 + \frac{K_n K_e}{h}\right)}.$$

Pour le réactif B:

$$c_0 = [B] + [BH^+]$$
 $K_A = \frac{[B].h}{[BH^+]}$

soit pour l'expression de la concentration de l'espèce active :

$$[B] = \frac{c_0}{\left(1 + \frac{h}{K_{\rm A}}\right)}.$$

L'expression de la vitesse de réaction pour les temps voisins de zéro s'écrit :

$$r_0 = \frac{kc_0^2}{\left(1 + \frac{h}{K_A}\right)\left(1 + \frac{K_n K_e}{h}\right)}$$

et donc la constante k_{obs} :

$$k_{obs} = rac{k}{\left(1 + rac{h}{K_{
m A}}\right)\left(1 + rac{K_{
m n}K_{
m e}}{h}\right)} = rac{k}{f(h)}.$$

b. Si on cherche à optimiser la constante k_{obs} en jouant sur le pH, on résout l'équation $\frac{dk_{obs}}{dh} = 0$, soit f'(h) = 0, ce qui donne :

$$\frac{1}{K_{\Delta}} - \frac{K_n K_e}{h^2} = 0$$

soit:

$$h=\sqrt{K_nK_AK_e}.$$

8.7 Contrôle cinétique/contrôle thermodynamique

- 1. Le produit C est le produit cinétique tandis que le produit B est le produit thermodynamique.
- 2. Le composé A disparaît : il s'agit de la courbe 1.

Le composé C apparaît et est majoritaire aux temps courts de la réaction : il s'agit de la courbe 3. Le composé B apparaît et est majoritaire aux temps longs de la réaction : il s'agit de la courbe 2.

8.8 Décomposition de l'urée en solution

1. La vitesse de disparition de l'urée est aussi la vitesse r de la réaction :

$$r = -\frac{\mathrm{d}[(\mathrm{H}_2\mathrm{N})_2\mathrm{CO}]}{\mathrm{d}t}.$$

- **2.** C'est la dimension de la constante de vitesse qui renseigne sur l'ordre global de la réaction. Une réaction d'ordre global un a sa constante de vitesse homogène à l'inverse d'un temps.
- **3.** L'intégration de la loi de vitesse d'ordre un donne une dépendance de la concentration du réactif avec le temps donné par la relation :

$$[(H_2N)_2CO] = [(H_2N)_2CO]_0. \exp(-kt)$$

Soit t_{80} le temps où 80 % de l'urée a disparu. Nous avons :

$$t_{80} = \frac{1}{k} \ln \left(\frac{c_0}{c} \right)$$
 avec: $\frac{c}{c_0} = 0, 2.$

Numériquement:

$$t_{80} = 40240 \text{ s} = 11,18 \text{ h}.$$

4. La constante de vitesse de réaction k est supposée suivre la loi d' ARRHENIUS : $k = A \cdot \exp\left(-\frac{E_a}{RT}\right)$. En notant k_1 la constante de vitesse à la température T_1 (= 350 K), et k_2 la constante de vitesse à la température T_2 (= 300 K), nous avons :

$$\frac{k_2}{k_1} = \exp\left(-\frac{E_a}{R} \cdot \left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right)$$

ce qui permet le calcul de k_2 quand les autres grandeurs sont connues. Nous obtenons :

$$k_2 = 2,97.10^{-9} \text{ s}^{-1}.$$

Le nouveau temps $t_{80~\%}'$ correspondant à un taux de transformation de 80 % vaut :

$$t'_{80} = 7,51.10^8 = 6299$$
 jours.

Le temps correspondant à un taux de transformation donné est indépendant de la concentration initiale dans le cas d'une réaction d'ordre 1, mais dépend de la température. L'effet de la température est très notable : l'énergie d'activation est très élevée (il est plus usuel de rencontrer des énergies d'activation de quelques dizaines de $kJ \cdot mol^{-1}$).

5. L'uréase joue le rôle de catalyseur de la réaction d'hydrolyse de l'urée.

6. En supposant que le facteur préexponentiel est le même pour la réaction non catalysée et pour la réaction catalysée, nous avons :

$$\frac{k'}{k} = \exp\left(\frac{(E_{\rm a} - E_{\rm a}')}{RT}\right)$$

soit, en exprimant E'_a l'énergie d'activation pour la réaction catalysée :

$$E_{\rm a}' = E_{\rm a} + RT. \ln \left(\frac{k}{k'}\right).$$

ce qui donne *numériquement*, à la température $T = T_2 = 300 \text{ K}$ ($k(T_2) = 2,97.10^{-9} \text{ s}^{-1}$ et $k'(T_2) = 3,00.10^4 \text{ s}^{-1}$):

$$E_{\rm a}' = 91 \,\mathrm{kJ \cdot mol^{-1}}$$

8.9 Oxydation des ions hydrogénosulfite

- 1. L'approximation de l'état stationnaire (AES) est applicable au radical $SO_5^{\bullet-}$ car il est formé par réaction de constante de vitesse k_3 et disparaît par réaction de constante k_4 avec $k_4 \gg k_3$. Il ne s'accumule donc pas dans le milieu.
- 2. La vitesse recherchée est définie par :

$$v = k_5[S_2O_6^{2-}].$$

Application de l'AES à l'ion $S_2O_6^{2-}$: $\frac{d[S_2O_6^{2-}]}{dt} = 0 = v_4 - v_5$.

Application de l'AES au radical $SO_3^{\bullet-}: \frac{d[SO_3^{\bullet-}]}{dt} = 0 = v_1 - v_2 - v_3 - v_4.$

Application de l'AES au radical $SO_5^{\bullet -}$: $\frac{d[SO_5^{\bullet -}]}{dt} = 0 = v_3 - v_4$.

Il vient ainsi : $v_3 = v_4 = v_5$. La vitesse recherchée s'exprime par : $v = k_3[SO_3^{\bullet -}][O_2]$ avec $[SO_3^{\bullet -}]$ isolé dans l'AES appliquée à $[SO_3^{\bullet -}]$.

$$[SO_3^{\bullet -}] = \frac{k_1[HSO_3^-][Fe^{3+}]}{k_2[H^+][Fe^{2+}] + 2k_3[O_2]}.$$

Il vient finalement:

$$v = \frac{k_1 k_3 [\text{HSO}_3^-] [\text{Fe}^{3+}] [\text{O}_2]}{k_2 [\text{H}^+] [\text{Fe}^{2+}] + 2k_3 [\text{O}_2]}$$

3. Le terme $k_2[H^+][Fe^{2+}]$ devient négligeable devant le terme $2k_3[O_2]$. L'expression de la vitesse ν devient :

$$v \approx \frac{k_1}{2} [\text{HSO}_3^-] [\text{Fe}^{3+}].$$

8.10 Cinétique enzymatique

1. L'application de l'AES conduit à la relation :

$$\frac{d[ES']}{dt} = 0 = k_2[ES] - k_3[ES'].$$

2. a) La conservation de l'enzyme s'écrit : $[E]_0 = [E] + [ES] + [ES']$.

b) Nous avons : $k_2[ES] = k_3[ES']$ et $K_s = \frac{[ES]}{|E||S|}$. Ainsi :

$$[E]_0 = \frac{[ES]}{K_s[S]} + [ES] + \frac{k_2}{k_3}[ES].$$

$$\text{Ainsi}: [ES] = \frac{[E]_0}{\frac{1}{K_{\rm s}[S]} + 1 + \frac{k_2}{k_3}} = \frac{[E]_0 K_{\rm s}[S]}{1 + \left(1 + \frac{k_2}{k_3}\right) K_{\rm s}[S]}$$

c) La vitesse v s'exprime par :

$$v = \frac{\mathrm{d}[P_2]}{\mathrm{d}t} = k_3[ES']$$

Il vient:

$$v = \frac{k_2 k_3 [E]_0 K_s[S]}{k_3 + (k_2 + k_3) K_s[S]} = \frac{\frac{k_2 k_3 [E]_0}{k_2 + k_3} [S]}{\frac{k_3}{(k_2 + k_3) K_s} + [S]}$$

Il s'agit bien de l'expression demandée avec $A = \frac{k_2 k_3 [E]_0}{k_2 + k_3}$ et $B = \frac{k_3}{(k_2 + k_3)K_s}$.

3. Lorsque la concentration en substrat est très élevée ($[S] \gg B$), la vitesse de formation du produit tend vers une valeur limite $v_{\text{max}} = A$.

4. On a :

$$\frac{1}{v} = \frac{B}{A} \times \frac{1}{[S]} + \frac{1}{A}$$

Le tracé de 1/v = f(1/[S]) fournit une droite de coefficient directeur B/A et d'ordonnée à l'origine 1/[A].

5. Les expressions précédentes fournissent : $\frac{A}{|E|_0} = \frac{k_2 k_3}{k_2 + k_3} = 0,096$.

$$B = \frac{k_3}{(k_2 + k_3)K_s} = 2,62$$
 et lorsque la concentration S est élevée : $\frac{[E]_0}{[ES']} = \frac{k_3[E]_0}{k_2[ES]} \approx \frac{k_3}{k_2} \left(1 + \frac{k_2}{k_3}\right) = 1 + \frac{k_3}{k_2}$.

Applications numériques : $k_2 = 0.163 \text{ s}^{-1}$; $k_3 = 0.235 \text{ s}^{-1}$ et $K_s = 0.225$.

8.11 Monochloration de l'éthane

1. En utilisant l'équation bilan il est possible de définir la vitesse *v* par :

$$v = \frac{\mathrm{d}[\mathrm{HCl}]}{\mathrm{d}t} = \frac{\mathrm{d}[\mathrm{C}_2\mathrm{H}_5\mathrm{Cl}]}{\mathrm{d}t} = -\frac{\mathrm{d}[\mathrm{Cl}_2]}{\mathrm{d}t} = -\frac{\mathrm{d}[\mathrm{C}_2\mathrm{H}_6]}{\mathrm{d}t}.$$

- **2.** La loi de vitesse peut s'écrire : $v = k[Cl_2]^a[C_2H_6]^b$.
- **3.** La vitesse de la réaction correspond par exemple à la vitesse de l'acte $2: v = k_2[C_2H_6][Cl^{\bullet}]$. L'application de l'AES à l'intermédiaire réactionnel Cl^{\bullet} s'écrit :

$$0 = 2k_1[Cl_2] - k_2[C_2H_6][Cl^{\bullet}] + k_3[C_2H_5^{\bullet}][Cl_2] - 2k_4[Cl^{\bullet}]^2.$$

L'application de l'AES à l'intermédiaire réactionnel $C_2H_5^{\bullet}$ s'écrit :

$$0 = k_2[\mathbf{C}_2\mathbf{H}_6][\mathbf{Cl}^{\bullet}] - k_3[\mathbf{C}_2\mathbf{H}_5^{\bullet}][\mathbf{Cl}_2].$$

En additionnant membre à membre et en isolant la concentration en intermédiaire réactionnel [Cl*]:

$$[\operatorname{Cl}^{\bullet}] = \sqrt{\frac{k_1[\operatorname{Cl}_2]}{k_4}}.$$

Ainsi
$$v = k_2 \sqrt{\frac{k_1}{k_4}} [C_2 H_6] [Cl_2]^{1/2} : a = 1/2, b = 1 \text{ et } k = k_2 \sqrt{\frac{k_1}{k_4}}.$$

- **4.** k s'exprime par exemple en mol^{-1/2}·L^{1/2}·s⁻¹.
- **5.** L'énergie d'activation E_a s'écrit : $E_a = RT^2 \frac{\mathrm{d} \ln k}{\mathrm{d} t}$. En utilisant la relation $k = k_2 \sqrt{\frac{k_1}{k_4}}$ et en exprimant

chaque constante de vitesse sous la forme $k_i = A \exp\left(-\frac{E_a^{(i)}}{RT}\right)$ il vient :

$$E_{\rm a} = E_{\rm a}^{(2)} + \frac{E_{\rm a}^{(1)}}{2} - \frac{E_{\rm a}^{(4)}}{2}$$