TD Cinématique des fluides

Exercice 1 : Opérateurs vectoriels

On trouve :
graa fi =y + (2zy — 2%) @, — 292,
gradfzz—( . 5 €+ s 2

T —y) (z-y)
grad fy = -+ t2 otz +eul0z,
@ On trouve :
divV, = 2(3zz +y) ot V=0
div V3 = ycos(zy) — zsin(zz) rot Vy = zsin(z2) @, — z cos(zy) €.
divVs =0 rot V3 = 3we,

Champ de vitesse

Exercice 2 : Tornade

Par continuité de la vitesse en r = a,

K .
wa = — d’ou K = wa?.
a

@ Les lignes de courant sont des cercles.

@ Comme v, = 0, on a directement div ¥ = 0, ’écoulement est donc incompressible.

E Pour r < a,

e ddor? ] iR .
rot v = — €,=— X2rwe, =2we,.
r dr T

L’écoulement est donc tourbillonnaire dans le coeur de la tornade. Pour r > a,

—_, 1dK_, =
rotv =—-——¢,=0,
r dr

I’écoulement est donc irrotationnel hors du coeur.



Exercice 3 : Houle

Il s’agit d’une onde progressive harmonique qui se déplace dans le sens des x croissants.

@ A Tinstant ¢ = 0,

>enz=0, 7 =Hwe?*u,;
>enz=\4onakz=m/2donc ¥ = Hwe"u,;
> enz=\/2onakz=ndonc ¥ =—Hwe"*u,.

Le champ de vitesse est donc partout exponentiellement croissant, mais sa direction change, voir figure 2.

A

@ Calculons la divergence,

vy | Ouy | Dy,

dny = oz i y i 0z

= —Hkwe** sin(kz — wt) + 0 + Hkw e** sin(kz — wt) = 0.

L’écoulement de la houle est donc incompressible.

E Calculons maintenant le rotationnel,

0

a—x vm(m)z) 0
ey £~ S — 0 — avz avx — (%_avz)
ot T =VAT= 1 KAl O e Bl & P ™ @,
i;?_z v;(z, 2) 0

d’out on déduit
.

rot 7 = [Hkwe*? cos(kx — wt) — Hkwe** cos(kz —wt)| @, = 0 .

L’écoulement est donc irrotationnel.
Débits
Exercice 4 : Robinet

L’eau accélere sous 'effet de la pesanteur. Comme elle est incompressible, il y a conservation du débit volu-
mique Sv au cours de ’écoulement : une augmentation de vitesse impose une réduction de section du jet.

@ En supposant le jet cylindrique, la conservation du débit volumique s’écrit

d2 d2 , di\’
(ﬂ%) v = (71'72) Vo soit vy = (i) v~ 3v; .

La vitesse a quasiment triplé.

Exercice 5 : Transfusion sanguine

La poche doit étre injectée en une demi-heure, ce qui donne un débit volumique

Q=02L-ht=56-103%m?.s71.



@ Le tuyau et l'aiguille étant cylindriques,

Viuy = % =28:10%m-s7! et Vyp=—"75=078m- s

Q
a

Puisque Viuy < Vaig, on peut supposer le sang en équilibre hydrostatique dans le tuyau souple et la poche ... mais ce
n’est pas le cas dans l'aiguille. Calculons le nombre de Reynolds de cet écoulement,

2a Vaig P

Re = =160,

ce qui signifie que I’écoulement est laminaire.

La nature laminaire de ’écoulement est essentielle pour pouvoir le décrire par un profil de vitesse
de type Poiseuille. S’il avait été turbulent, le profil d’écoulement (moyenné dans le temps) aurait été
davantage voisin de celui d’un écoulement parfait.

@ Le sang étant un fluide visqueux, sa vitesse doit étre nulle au niveau de la paroi de I’aiguille, soit

?(r:a):ﬁ) donc 1—aa®=0 et a=—.

E Relions le débit volumique a la différence de pression.

¢ s
= itk Paz//( —)rdrde
PS /27rd9></ (1——)rdr

7(13 P)a x27r><[— T]O

4anl 2 4a?
= % X 21 X (? - %)
a 2 2 2
02 ()
0= ﬂ(Pes—nePs) a*

d’oul on déduit directement

PP, = S”ZQ 8,9-10%Pa.

@ Le fluide étant supposé en équilibre hydrostatique dans le tuyau souple,
P.= Py + pgH et Ps=Py+ AP.

On en déduit 8nf
pgH — AP = %

et ainsi

H= - <8nﬁQ+AP)=96cm.
pg \7a

Exercice 6 : Sténose artérielle

Le sang est un fluide visqueux, donc I’écoulement est de vitesse nulle sur les parois de ’artére. Ainsi,

v(r=Rp) =0 soit 1-aR$=0 d’ott a=




@ Le lien entre AP et les données de I’énoncé se fait par I'intermédiaire de la vitesse débitante. Par définition du

débit volumique,
Q= // 7-dS
section
AP R02 7'2
= L, //(I—R02 rdrdf

2 27 Ro 2
:APRO / d9></ (l—r—z)'rdr
dnLo Jo 0 R;
2

APRG [r o ]R°

4nL, 2~ 4RZ],
2 2 4
_BPRy onx(Ro_Fo
4nLo 2~ 4R2
2 2 2
_ o, APRE (B} _Rg
4nLo 2 4
o_ TAPR{
T 8l
On en déduit
Q@ AP . 8nLoU
U = = R d, AP = - 7P .
7RZ  8pLo © = RZ i

IE Par analogie avec une résistance électrique, AP est 1'analogue de U = AV (différence de potentiel) et le débit
volumique est ’analogue de l'intensité, qui n’est autre qu'un débit de charge. La différence de pression entraine
I’apparition d’un débit volumique, de méme qu’une tension appliquée a une résistance entraine ’apparition d’un
courant. On peut également faire I’analogie avec la résistance thermique, que nous verrons dans quelques semaine :
une différence de température entraine ’apparition d’un flux thermique.

Tous ces phénoménes qui se décrivent avec un formalisme voisin sont appelés « phénoménes de trans-
port ». Ils recouvrent entre autres le transport de charges électriques, le transport de masse par un
fluide, la diffusion thermique, ou encore la diffusion de matiére (pas au programme de PT).

On déduit de ce qui précede

_ ST]L()
i TR

E A partir de lexpression précédente, il vient directement
_ 8nL
= 2Rd

Avec les notations de la figure 3, la différence de pression imposée par le coeur s’écrit

o R _ _S1L _1289L

g "= 2(Re/D RS

AP=Py—Pp=Py—Pg+Pp—Po+Po—Pp.

Comme 1’écoulement est incompressible, les trois portions d’artére sont traversées par le méme débit volumique Q.
Ainsi, en introduisant les résistances hydrauliques de chaque portion,

AP =RuyQ + RyQ + RuQ = (2Ru + Ry)Q

pontage

ce qui permet d’identifier

144nL
TRy
Les résistances hydrauliques sont dites associées en série, ce qui est cohérent avec le fait que le débit est ’analogue
de Pintensité.

Rus =2Ru + R, =




E La différence de pression est la méme dans les deux cas : en premiére approche, la présence de la sténose ne
modifie pas le comportement du coeur. Ainsi,

Qst o AP/RH,st i 3RH - 3
Qsain  AP/Rpysain 2R+ Ry 2+16

La sténose réduit fortement le débit artériel, ce qui pose un probléme de santé potentiel.

~0,167.

@ Le pontage est schématisé figure 3. La différence de pression est la méme pour l'artére et le pontage, mais les
débits s’ajoutent.

1 1
Qtot = Qst + onnt b ( + ) AP

RH ,st RH ,pont
Le débit devant étre identique & celui d’une artére saine soumise a la méme différence de pression,
1 1 AP
AP = —
3Ry

Qtot b Qsain donc (

RH ,st RH ,pont
On en déduit

TRy mRy  wRg . 3 4_ p4
VYR e T ey | Ll i e T
et ainsi
1/4
% - (g) ~0,95.

Forces visqueuses

Exercice 7 : Ecoulement de Poiseuille plan

1 - Les lignes de courant sont des droites dirigées par u,. Le profil de vitesse dans une section

droite de I’écoulement a une allure parabolique, avec une vitesse nulle sur les parois et maximale au centre,
z

a

O — .

2 - Il s’agit d’un écoulement visqueux car la vitesse du fluide est égale a la vitesse de la paroi en x = *a.

3 - L’écoulement est incompressible, car

Ovg i % " v,
ox Ay 0z

div? = =04+0+0.

En revanche, il est tourbillonnaire puisque le rotationnel du champ de vitesse

e o S0 _6”13 - ZVm_axzﬂy

a2

n’est pas uniformément nul.

4 - Considérons une section droite (quelconque) de la conduite. Le vecteur surface élémentaire s’y écrit ds = dy dz U,

donc
+b
DV—Vmax/ dy/ (1——) dz

+a
z
= maxXQbX |:Z—3—2:|

—a

3
= 2meax (CL = 3—2 +a 3(1,2)
= 2bVmax (2(1 - —a)
8



5 - La conduite compte quatre parois, nous allons donc calculer la force visqueuse sur chacune de ces parois avant
de sommer pour obtenir la résultante. Dans tous les cas, on constate sur le profil de vitesse que le fluide « tire » sur
la paroi dans la direction +1,, ce qui donne la direction de la force. Sur la paroi du haut, la force a pour norme

O —2a 4bL
9z (z:a) ?Vmax’ X 2bL = Tnvmax

Fhaus =1 X X 2bL =n X

La force est la méme sur la paroi du bas : on peut le comprendre qualitativement par symétrie ... ou poser le calcul
et constater que le seul signe qui change disparait dans la valeur absolue. De plus, les parois latérales ne subissent
pas de force visqueuse car la vitesse ne dépend pas de y.

Finalement, apres calcul,

8bL
I_ﬁ = 2Fhautﬂx = T"]Vmaxﬁm )

et on peut identifier le débit volumique par exemple en exprimant V,,,, = 3Dy /8ab, ce qui donne

S6L  3Dv_, 3L

.
X Uy = ——Dyu
a $ba ° a2 i

Exercice 8 : Glissement sur un plan incliné lubrifié

Le plus simple est de définir un axe z orienté le long de la pente vers le bas, et un axe y perpendiculaire a la
pente vers le haut.

@ Le lubrifiant étant visqueux, sa vitesse est nulle en y = 0 et elle est égale a la vitesse V' du solide en y = e. Le
profil de vitesse dessiné étant clairement linéaire, on en déduit

|4

— — —
U =0z(y) € = SYe.

@ La force visqueuse F tend a ralentir le solide dans son mouvement de glissement : on en déduit qu’elle est orientée
selon —€,. De plus, en notant S la surface de contact entre le fluide et le solide, sa norme est donnée par

ov |4
F=n8|= =nS—
0y |, e
d’out on déduit
|4
F= —nS—€x
e
E e Systéme : solide de masse M ;
o Référentiel : terrestre R, considéré galiléen ;
e Bilan des forces :
> Poids P =mg = Mgsinae, — Mgcosa®y;
Y,
> Force de frottement exercée par le fluide : F' = —nS % €y
> Force de réaction normale du fluide : & = R7E, (obligée car le solide ne peut pas traverser le fluide et le plan
incliné! ... et comme il n’est pas en contact avec le support, c’est forcément le fluide qui exerce la force).

e Théoréme de la résultante cinétique : en notant V= V'€, la vitesse du solide,

—
MYl P R
dt
R
soit en projection sur €,
dVv . v
ME = Mgsma—nS;
que 'on peut réécrire sous la forme
dVv
'y + XJ—iV =gsina.

La vitesse limite atteinte correspond & la solution particuliere de I’équation différentielle,

Megsin o

Vim = nS




Exercice 9 : Déplacement d’un piston a huile

L’estimation la plus simple est

_ PP _Pr

GP 5 5

@ La section au travers laquelle s’écoule le fluide est une couronne circulaire (un anneau) compris entre les rayons R
et Ry. Elle a pour surface S = 7R — 7 R;2. Le débit volumique vaut donc

Dy =wv4S = 7ro¢%(R22 - R2).

@ Raisonnons en coordonnées cylindriques. La force surfacique de viscosité subie par le cylindre intérieur a pour
norme

ov

£f=1 5 .
ur or .

Fy

Compte tenu des données a disposition, on peut approximer que l'ordre de grandeur de la vitesse dans l'interstice
est vq et que cette vitesse change sur une distance Rs — R;. Ainsi, en ordre de grandeur,

ov Uq aP; it P aP;
— ~ = soi urf 2 ———,
or|,_p, Ro—Ri nh(R:—R) sl = h(Ry — Ry)

En supposant que cette force surfacique est la méme sur tout le cylindre, il vient

27('R1(1P1

Fvisq =2wR1h X Fy¢ d’ou Fvisq = Ry — Ry ’

E Notons % le vecteur unitaire orienté de la gauche vers la droite de la figure. Le piston est soumis

> ala force F = F@ exercée par 'opérateur ;

> a la force visqueuse F'yiq = —Fvisqﬂ, orientée vers la gauche car le piston se déplace vers la droite;

> 4 la force pressante F p = (P — P)TR?W = —PnR?

Comme le mouvement du piston est qualifié de quasi-statique, on peut considérer que ces forces se compensent, d’ou

27TR101P1

- e 27!‘R10£P1
Ry — Ry

F —P17TR12:0 soit F—ﬁ"t‘Plﬂ'Rf.

Exercice 10 : Démonstration du profil de Poiseuille

La conduite est invariante par toute rotation autour de son axe, il est donc logique que le champ des vitesses
soit indépendant de la coordonnée angulaire 6. De plus, I’écoulement se faisant dans la direction de la conduite, il
est raisonnable de supposer que le champ des vitesses est colinéaire a 'axe €.

@ L’écoulement étant incompressible,

v,

9z

ce qui signifie que v, est « une constante par rapport a z », c’est-a-dire que v, est indépendant de z.

div? =0 soit

0

\
\

@ Le systéme (X) est compris entre les abscisses z et z + dz, voir figure 4. Il subit donc

dFp =Fp(2) + Fp(z+dz) = P(2) 12 €, — P(z + dz)nr? 2, = —g nr2dz €,



E La portion de cylindre en contact avec des particules fluides de vitesse différente est simplement constituée de la
surface latérale, de surface dS = 27r dz. Ainsi,

dov
dF iy = N2 21rdz @, .
q ’I’] d’r’ mraz e

|E| Comme (o) est un systéme fermé en mouvement & vitesse constante, alors d’aprés le théoréme de la résultante
cinétique, la somme des forces qu’il subit est nulle. On a donc

P
dﬁp+dl_ﬁvi3q= 0 soit - ((ii—zﬂrzdz+n%27rrdz=0

ce qui conduit bien & I’équation

dv. _ 7 dP
dr ~ 2pdz’

IE Comme v, ne dépend pas de z, dériver par rapport a z ’équation précédente conduit a

dp , dP
@—0 soit E—k—cte.

Par séparation des variables et intégration entre les deux extrémités de la conduite, on obtient

Py L
/ dP:k/ & 9 =
Po+AP 0 L

Le fluide étant visqueux, sa vitesse est nulle au contact de la paroi : v(r=R) = 0. Ainsi,

dv. ——A—P'r soit /vz dv ——E/rrdr
dr 2L 0 =7 oL g

ce qui donne finalement

) AP (r? R?
2T oL\ 2 2
ce qui permet de conclure
- AP 2 2\ =
v = 4nL(R —-r9)e,.




