TD Dynamique des fluides

Ecoulements parfaits
Exercice 1 : Débitmetre de Venturi

L’écoulement étant incompressible,

\ 1
Dy = v151 = 1255 d’ou Vg = V1 > V1.

-

En négligeant les pertes de charge et en supposant le débitmetre horizontal, le théoréme de Bernoulli donne
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@ En remplacant les vitesses v; 2 par Dy /Si 2 on obtient en réécrivant le théoréme de Bernoulli
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on a donc py < p; et donc
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et finalement

Exercice 2 : Formule de Torricelli

« Approximation de régime quasi-permanent » signifie que la hauteur d’eau dans le réservoir varie
suffisamment lentement pour pouvoir appliquer toutes les relations du régime permanent (conservation
du débit, Bernoulli, etc.)

L’eau étant un fluide incompressible, on a par conservation du débit volumique

S
Dy =Svsq=svp soit VB = —VA S VA.
s

@ Appliquons le théoréme de Bernoulli entre la surface libre du réservoir et la sortie de P'orifice (on pourrait tout
aussi bien dire « sur la ligne de courant allant de A & B »), évidemment sans puissance indiquée et en négligeant les
pertes de charge,

P 2 Potm 2 - P 2
_A+U_A+gH=L+’U_B+0 soit L+O+gH=L+v_B+0
p 2 p 2 p 2

car la pression dans un jet libre est égale a la pression atmosphérique. On en déduit
vg =2gH

et ainsi le débit volumique

Dy = s4/2gH .




@ La conservation du débit s’écrit
Sva =svp =sv/2g9H.

Or la vitesse au point A est reliée & la dérivée de la hauteur d’eau dans le réservoir,
Vg =———
dt

avec un signe © car v4 > 0 mais H diminue. On en déduit

_S(ii—lj = sy/2gH soit (ii—}tl = —ay/2gH .

On peut aussi comprendre ce résultat par conservation du volume. Le volume d’eau §V sortant du
réservoir pendant dt peut d’une part étre relié au débit volumique de sortie,

0V = Dy dt = s+/2gH dt

et d’autre part a la variation de hauteur d’eau dans le réservoir,

§V =Dy dt = S[H(t) — H(t + dt)] = _S(L_i[ dt .

E Une telle équation s’intégre par séparation des variables,

dH ° dH S
— = —a/2¢dt soit / — = —a\/2g dt
vVH H, VH 0

ce qui donne

0 — 2¢/Hy = —a+/2g(At — 0)

At 20
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Considérons un axe z vertical vers le haut dont l'origine se trouve au fond du réservoir. Les écoulements sont
supposés parfaits, incompressibles, et suffisamment lents (quasi-stationnaires) pour pouvoir appliquer la relation de
Bernoulli.

et ainsi

Exercice 3 : Vidange d’un réservoir

Comme D > d, on peut supposer la vitesse V' de la surface libre du réservoir négligeable devant la vitesse de
sortie. La relation de Bernoulli écrite entre la surface libre et la sortie du tuyau s’écrit

P, V2 P, v2
Y = s .1
7p£+ 2 + gh 7p£+ ) g

vs=+/2g9(h+ L).

d’ou on déduit

Le cas sans tuyau s’obtient en prenant L = 0.

@ Le débit volumique de sortie s’écrit

d? d?
Dy = T s soit Dy = T V2g9(h+1L).

Le débit est d’autant plus élevé que la longueur L du tuyau d’évacuation est élevée.




@ L’écoulement étant incompressible, le débit volumique se conserve. En notant V' la vitesse a laquelle descend le
niveau d’eau, on a donc

wD? wd?

—V =—u;.

4 4
Or cette vitesse est évidemment reliée a la variation de hauteur d’eau par

dh dh
V—’a e

puisque la dérivée est négative car h décroit. On en déduit alors

7D%* dh  md? | P

E Notons T le temps total de vidange du réservoir et hg la hauteur d’eau initiale. Par séparation des variables,
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ce qui permet de conclure

=22 (VR +L-VI).

@ Appliquons la relation de Bernoulli entre la sortie de la conduite d’évacuation (P = Py, v = vs, 2 = —L) et un
point quelconque de cette conduite (P(z) inconnue, v = vg car diamétre uniforme, z < 0 mais quelconque) :

P Pam N
E’Z) +702 +g9z= Tt+};2/_9[/ d’oul P(2) = Pagm — pg(L + 2) .

On remarque que l'on obtient un champ de pression de type hydrostatique. Cela peut s’interpréter
gréace a I'incompressibilité de I’écoulement : tout le fluide descend la conduite « d’un bloc » a la méme
vitesse, donc en se plagant dans le référentiel lié au fluide, également galiléen car en translation rectiligne
uniforme par rapport au référentiel terrestre, on retrouve une situation d’hydrostatique.

On constate que la pression est plus faible sur le haut de la conduite que sur le bas. D’aprés ’expression précédente,
la valeur critique z. & laquelle apparait la cavitation est telle que P(2.) = Pgat, soit

Poim — P.
Patm — pg(L + 2c) = Prat soit 2 = % —L.

Le phénomeéne apparait si cette hauteur critique est atteinte a l'intérieur de la conduite, soit z. < 0, ce qui donne

Patm_Psat_L<0 soit L>Patm_Psat.
P9 P9

Attention, il n’est pas possible de généraliser ce résultat a l'intérieur du réservoir : la section étant
différente, la vitesse n’y est pas égale a vs, et donc ’expression de la pression n’est pas valable.



Exercice 4 : Sonde de Pitot moyennée

Les sondes de Pitot moyennées présentées dans la vidéo sont des systémes sensibles, qui perturbent peu 1’écou-
lement car elles sont de petite taille et qui peuvent fonctionner dans les deux sens d’écoulement.

@ Voir figure 4.

V, Py - A E (LAz

Figure 4 — Lignes de courant autour de la sonde de Pitot.

@ Raisonnons par symétrie. Le tracé des lignes de courant laisse penser que pour toute ligne de courant passant
par la gauche de la sonde, il en existe une symétrique passant par la droite. Par conséquent, la ligne de courant
correspondant & ’axe de la conduite arrive au point A de maniére orthogonale & la sonde, soit l_/')(A) =€, Or en
régime stationnaire, il n’y a pas/plus de fluide qui entre ni sort de la sonde (pas de communication entre les deux cotés
de la membrane). Par conséquent, la vitesse v4 est nécessairement tangente & la sonde, c’est-a-dire U(A) - €, =0
(méme condition limite qu’au contact d’une paroi solide). En combinant avec la premiére condition,

?(A)'?EZUA?:E'?Z‘:’UA donc

D’apres le théoréme de Bernoulli appliqué a la ligne de courant centrale,

P, V2 P 02 . 1
T2 tgra=-2 4+ —4gza dot Py =P+ =pV2.
p 2 p 2 2

E Comme les effets d’altitude sont négligés, alors la pression est uniforme dans les deux compartiments de la sonde.
La membrane, de surface S, subit : -

> la force de pression coté dynamique, Fayn = +Pa S€;;

> la force de pression c6té stati_gue, l_*")stat =—PgSe,;

> la force de rappel élastique, f = —kz€y.
Lorsque ’équilibre de la membrane est atteint,

den+Fstat+f:6>-

E En projetant cette relation et en remplagant les pressions,
PAS—PBS—IC.’L':O

(Poo+%pV2—Poo)S—km=O

1
5,oSV2 =kx
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