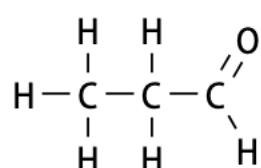


8. IR

Exercice 1

14 1. De 2,5 à 25 μm .
2. Au-dessus de 1 200 cm^{-1} .
3. a. La « zone des empreintes digitales » se trouve au-dessous de 1 200 cm^{-1} .
b. Elle permet d'identifier une molécule en comparant son spectre IR à ceux enregistrés dans une banque de données.

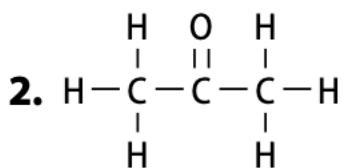
Exercice 2


15 1. Les alcènes.
2. $\lambda = 10\ 000 / 1\ 650 = 6,1\ \mu\text{m}$.

Exercice 3

17 1. Molécule **a** : vers 2 200 cm^{-1} pour la liaison $\text{C}\equiv\text{N}$;
molécule **b** : vers 3 300 cm^{-1} pour la liaison O–H.
2. Molécule **a** : spectre 1 ; molécule **b** : spectre 2.

Exercice 4


21 1. C'est un aldéhyde car on a les bandes d'absorption caractéristiques des liaisons $\text{C}=\text{O}$ à 1 730 cm^{-1} et $\text{C}-\text{H}$ à 2 726 cm^{-1} .
2. Avec 3 atomes de carbone et le groupe carbonyle en bout de chaîne, il vient :

3. Il s'agit du propanal.

Exercice 5

23 1. Les cétones possèdent le groupe caractéristique carbonyle.

3. La molécule de 4-méthylpent-3-èn-2-one, qui contient le groupe d'atomes caractéristique des cétones ($\text{C}=\text{O}$), présente la bande de la liaison $\text{C}=\text{O}$ vers 1700 cm^{-1} , mais aussi une bande vers 1650 cm^{-1} : celle de la double liaison $\text{C}=\text{C}$.

4. Les deux spectres présentent la bande de la liaison $\text{C}=\text{O}$ vers 1700 cm^{-1} , mais le second possède aussi une bande vers 1650 cm^{-1} : il s'agit du spectre de la 4-méthylpent-3-èn-2-one.

5. $\tilde{\nu} = 1/\lambda$ soit $\lambda = 1/1700 = 5,9 \times 10^3 \text{ nm}$.