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CHAPITRE 7 

Mécanique 3 – Approche énergétique 

Au début du 19e siècle, on commence à découvrir de nombreux phénomènes de plus en plus difficiles à expliquer 

avec les principes de la mécanique de Newton, en particulier la notion de gravitation universelle : électricité, 

magnétisme, phénomènes thermiques, etc. Si les deux premiers phénomènes peuvent s’expliquer par des forces, les 

phénomènes thermiques demandent d’autres concepts. 

D’autre part, on s’est rendu compte que quelque chose dans la nature se conservait toujours lors d’une 

transformation (physique, chimique) : l’action mécanique se transforme en « chaleur » (l’appellation est impropre, 

mais nous y reviendrons dans le cours de thermodynamique), l’électricité peut provoquer des réactions chimiques, 

etc. Ce « quelque chose » qui se conserve au cours de toute transformation semblait être un concept plus 

fondamental que le concept de force. Les physiciens du XIXe siècle lui ont donné le nom d’énergie. Aujourd’hui, c’est 

certainement le concept le plus important en physique, celui qui permet d’unifier tous les phénomènes. Pour 

certains savants, tous les aspects du monde extérieur que nous percevons sont des manifestations différentes de 

l’énergie. 

Dans ce chapitre nous allons nous consacrer à l’énergie mécanique qui présente elle-même différents aspects : 

énergie cinétique et énergie potentielle. 

 

1. Puissance et travail dans un référentiel 

 

1.1. Puissance d’une force dans un référentiel 

En physique, la puissance est l’énergie fournie à un système donné par unité de temps (nous définirons le terme 

énergie rigoureusement par la suite, assimilons la pour l’instant à la notion d’effort).  

 

Prenons l’exemple d’un haltérophile. Demandons-lui de soulever un haltère de 50 kg jusqu’à une hauteur de 1 mètre 

en une seconde. Demandons lui ensuite d’effectuer le même exercice en 5 secondes. On comprend intuitivement 

que cela requiert une puissance plus faible (même si au final, l’effort total est le même). Si on lui demande enfin de 

soulever un haltère de 100 kg en une seconde, cela va au contraire lui demander deux fois plus de puissance. En 

mécanique, la puissance est liée à la force à fournir (ici la force pour vaincre le poids de l’haltère) et la vitesse de 

l’objet en mouvement. 

DEFINITION 

La puissance d’une force 𝐹⃗ qui s’exerce sur un point matériel de vitesse 𝑣⃗𝑀/ℛ dans un référentiel ℛ est donnée 

par la relation : 

𝒫𝐹⃗/ℛ = 𝐹⃗ ⋅ 𝑣⃗𝑀/ℛ 

La puissance s’exprime en Watts (1W = 1 J.s-1) et dépend du référentiel choisi. 
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Dans le cas de l’haltérophile, la force est motrice : il met un haltère en mouvement (plus ou moins vite) ; en d’autres 

termes, la force qu’il exerce est dans le même sens que la vitesse de l’haltère (vers le haut). Dans ce cas on constate 

que la puissance 𝒫𝐹⃗/ℛ est positive. Cela signifie qu’on fournit de l’énergie à l’haltère. 

Mais une force peut aussi être résistante : par exemple une force de frottement. Dans ce cas la vitesse de l’objet et 

la force sont de sens opposés et donc la puissance 𝒫𝐹⃗/ℛ est négative. Cela signifie qu’on retire de l’énergie au 

système, en d’autres termes c’est lui qui nous fournit de l’énergie : dans le cas du frottement, la manifestation de 

cette énergie est par exemple l’élévation de température (exemple : lorsqu’on se frotte les mains). 

1.2. Travail d’une force dans un référentiel 

Nous avons vu que la puissance était une notion instantanée, elle se définit à un instant donné. Le travail d’une force 

se définit sur une durée donnée, par exemple entre deux instants t et t+dt. Elle peut, ce qui revient au même, être 

également définie par rapport au déplacement 𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗⃗ du système étudié pendant cette durée. 

DEFINITION 

▪ Le travail élémentaire d’une force 𝐹⃗ qui s’exerce entre les instants t et t+dt sur un point matériel M dans un 
référentiel ℛ est donné par la relation : 

𝛿𝑊𝐹⃗/ℛ = 𝐹⃗ ⋅ 𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗⃗ 

Le travail s’exprime en Joules (1 J = 1 N.m) et dépend du référentiel choisi. 

Il est également possible d’exprimer le travail en fonction du temps infinitésimal dt :  

𝛿𝑊𝐹⃗/ℛ = 𝒫𝐹⃗/ℛ ⋅ 𝑑𝑡 

En effet : 𝛿𝑊𝐹⃗/ℛ = 𝐹⃗ ⋅ 𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗⃗ = 𝐹⃗ ⋅ 𝑣⃗𝑀/ℛ𝑑𝑡 = 𝒫𝐹⃗/ℛ ⋅ 𝑑𝑡 

▪ Le travail total de cette force entre deux instants 𝑡1 (où le système est en 𝑀1) et 𝑡2 (où le système est en 𝑀2) 
s’écrit donc : 
 

𝑊
𝐹⃗

𝑀1→𝑀2 = ∫ 𝛿𝑊𝐹⃗

𝑀2

𝑀1

 

= ∫ 𝐹⃗ ⋅ 𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗⃗
𝑀2

𝑀1

= ∫ 𝒫𝐹⃗/ℛ ⋅ 𝑑𝑡
𝑡2

𝑡1

 

 

ATTENTION 
 

Il ne faut pas confondre : 
▪ Le symbole 𝑑𝑋 qui correspond à la notion mathématique de différentielle d’une fonction 𝑋. La grandeur 

𝑑𝑋 doit être interprétée comme une petite variation de la grandeur 𝑋. 
▪ Le symbole 𝛿𝑋 qui n’a pas de signification mathématique : il signifie l’apport d’une petite quantité de la 

grandeur 𝑋 qui n’est pas une fonction. 
 
Le travail élémentaire se note 𝛿𝑊 et non 𝑑𝑊 car le travail n’est pas une fonction, donc 𝛿𝑊 n’est pas une 
différentielle. Le travail à un instant donné ou en un point donné n’a pas de sens : le travail n’a de sens qu’entre 
deux points ou deux instants. En particulier le travail pour aller d’un point 𝑀1 à un point 𝑀2 dépend du chemin 
suivi. 
 

Cela n’aurait pas de sens d’écrire ∫ 𝛿𝑊
𝑀2

𝑀1
= 𝑊(𝑀2) − 𝑊(𝑀1) !! 
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2. Théorèmes de la puissance cinétique et de l’énergie cinétique 

 

2.1. Energie cinétique 

L’énergie cinétique est une composante de l’énergie mécanique : c’est sa manifestation sous forme de mouvement 

(nous verrons qu’il existe une autre composante de l’énergie mécanique, plus cachée). Un projectile, par exemple, 

possède d’autant plus d’énergie, c’est-à-dire qu’il fera d’autant plus de dégâts, que sa masse et sa vitesse seront 

grandes. 

DEFINITION 

Soit un point M de masse m se déplaçant à une vitesse 𝑣⃗𝑀/ℛ dans un référentiel ℛ. On définit l’énergie cinétique 

du point matériel M comme : 

𝐸𝑐 =
1

2
𝑚𝑣2 

Avec 𝑣2 = ‖𝑣⃗𝑀/ℛ‖
2

 

L’énergie cinétique s’exprime en Joules (1J = 1 kg.m2.s-2). 

 

2.2. Théorème de la puissance cinétique 

A VOUS DE JOUER 

1. Montrer que la dérivée de l’énergie cinétique s’écrit 
𝑑𝐸𝑐

𝑑𝑡
= 𝑚𝑣⃗ ⋅ 𝑎⃗ 

 

 

 

 

2. En se basant sur le PFD, montrer qu’on aboutit à : 
𝑑𝐸𝑐

𝑑𝑡
= 𝒫𝐹⃗𝑡𝑜𝑡 

 

 
 
 
 
 

 

THEOREME DE LA PUISSANCE CINETIQUE 

Soit un point M de masse m se déplaçant à une vitesse 𝑣⃗𝑀/ℛ dans un référentiel galiléen ℛ et soumis à un 

ensemble de forces extérieures dont la résultante est notée 𝐹⃗𝑡𝑜𝑡. On a alors : 

 

𝑑𝐸𝑐

𝑑𝑡
= 𝒫𝐹⃗𝑡𝑜𝑡 

 
 

 

Le théorème de la puissance cinétique constitue une alternative au PFD pour trouver l’équation du mouvement. Il 

permettra dans certains cas de simplifier les calculs ou d’arriver plus vite au résultat voulu. 
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2.3. Théorème de l’énergie cinétique 

A VOUS DE JOUER 

Intégrer le théorème de la puissance cinétique entre deux instants t1 et t2. En déduire une deuxième version du 
théorème précédent, appelée théorème de l’énergie cinétique. 

 
 
 
 

 

 

 

 

THEOREME DE LA PUISSANCE CINETIQUE 

Soit un point M de masse m se déplaçant à une vitesse 𝑣⃗𝑀/ℛ dans un référentiel galiléen ℛ et soumis à un 

ensemble de forces extérieures dont la résultante est notée 𝐹⃗𝑡𝑜𝑡.  

La variation de l’énergie cinétique du point M entre deux instants t1 et t2 vaut : 

 

Δ𝐸𝑐 = 𝑊
𝐹⃗𝑡𝑜𝑡
1→2 

 

 

Cette loi sert généralement à obtenir des relations entre les grandeurs cinétiques (norme de la vitesse, hauteur, 

angle...) entre deux instants donnés. 

2.4. Retour sur les significations physiques de la puissance et du travail 

A VOUS DE JOUER 

1. En se basant sur le théorème de l’énergie cinétique, expliquer comment varie l’énergie cinétique lorsque 
𝑊𝑡𝑜𝑡 > 0, lorsque 𝑊𝑡𝑜𝑡 < 0 et enfin lorsque 𝑊𝑡𝑜𝑡 = 0. 
 
 
 
 
 
 

2. En déduire l’interprétation physique du travail d’une force. 
 
 
 
 
 

3. En se basant sur le lien entre travail et puissance d’une force, proposer une interprétation physique de la 
puissance d’une force. 
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A RETENIR 

▪ Le travail élémentaire 𝛿𝑊 s’interprète comme étant la quantité infinitésimale d’énergie fournie 
algébriquement au système via la force lors du déplacement infinitésimal. 
 
→ Le système reçoit de l’énergie lorsque 𝛿𝑊 > 0 
→ Le système perd de l’énergie lorsque 𝛿𝑊 < 0 
→ Le système conserve une énergie cinétique constante lorsque 𝛿𝑊 = 0 

Le travail 𝑊1→2 correspond à l’énergie totale fournie algébriquement au système au cours de son 
déplacement du point M1 (en t1) au point M2 (en t2). 

Le travail 𝑾𝟏→𝟐 dépendant du chemin suivi, l’énergie fournie au système dépend donc de la trajectoire ! 

▪ La puissance correspond à un débit d’énergie :  

𝒫 =
𝛿𝑊

𝑑𝑡
 

 La puissance correspond à la quantité d’énergie fournie algébriquement au système par unité de temps : 

→ Le système reçoit de l’énergie lorsque 𝒫 > 0 
→ Le système perd de l’énergie lorsque 𝒫 < 0 
→ Le système conserve une énergie constante lorsque 𝒫 = 0 

 

3. Energie potentielle et énergie mécanique  

3.1. Energie potentielle 

L’énergie cinétique n’est en fait qu’une composante de l’énergie mécanique : elle est sa forme la plus manifeste, 

lorsque le système est en mouvement. Mais il existe une autre forme d’énergie, plus « cachée » : un système peut 

être au repos et disposer d’un « stock » d’énergie susceptible d’être converti en énergie cinétique.  

  
La voiture sur les montagnes russes est immobile. 

Cependant, par sa hauteur même, elle possède une 
certaine capacité à acquérir un mouvement. Les 

passagers, à ce moment, le comprennent ! 

La flèche est immobile au moment où l’archer se 
prépare … cependant l’arc est tendu : cela constitue 

également une réserve d’énergie ! 

 

Cette réserve d’énergie est appelée énergie potentielle. Elle peut potentiellement se convertir en énergie cinétique :  

lorsqu’on lâche les freins de la voiture dans les montagnes russes, ou lorsque l’archer lâche la corde de l’arc. On voit 

que l’énergie potentielle est associée à une certaine force : force de pesanteur dans le premier cas, force de rappel 

élastique dans le deuxième. On dit (et on le comprendra plus bas) que la force dérive d’une énergie potentielle. 

ATTENTION 

On ne peut pas associer une énergie potentielle à toutes les forces.  
Seules les forces dites conservatives dérivent d’une énergie potentielle. 
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DEFINITIONS 

Une force 𝐹⃗ est dite conservative si son travail entre deux points 𝑊
𝐹⃗

𝑀1→𝑀2  ne dépend pas du chemin suivi. 

Dans ce cas, le travail peut être écrit sous la forme de la variation d’une fonction : 

𝑊
𝐹⃗

𝑀1→𝑀2 = −Δ𝐸𝑝,𝐹 

 

La fonction 𝐸𝑝,𝐹 est appelée énergie potentielle. On peut également écrire :  

𝛿𝑊𝐹⃗ = 𝐹⃗ ⋅ 𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗⃗ = −d𝐸𝑝,𝐹 

 

En utilisant les coordonnées cartésiennes, on peut détailler les deux membres de l’égalité précédente : 

𝐹⃗ ⋅ 𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗⃗ = 𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦 + 𝐹𝑧𝑑𝑧 

d𝐸𝑝 = (
𝜕𝐸𝑝

𝜕𝑥
)

𝑦,𝑧

𝑑𝑥 + (
𝜕𝐸𝑝

𝜕𝑦
)

𝑥,𝑧

𝑑𝑦 + (
𝜕𝐸𝑝

𝜕𝑧
)

𝑥,𝑦

𝑑𝑧 

Par identification, nous avons donc pour un déplacement élémentaire (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) : 

𝐹𝑥 = − (
𝜕𝐸𝑝

𝜕𝑥
)

𝑦,𝑧

;  𝐹𝑦 = − (
𝜕𝐸𝑝

𝜕𝑦
)

𝑥,𝑧

;  𝐹𝑥 = − (
𝜕𝐸𝑝

𝜕𝑧
)

𝑥,𝑦

 

A RETENIR 

Dans un problème à un degré de liberté noté 𝑥 on aura : 
 

𝐸𝑝 = 𝐸𝑝(𝑥)  

 𝐹⃗ = 𝐹(𝑥) ⋅ 𝑢⃗⃗𝑥 
Par conséquent : 

𝐹(𝑥) = −
𝑑𝐸𝑝(𝑥)

𝑑𝑥
 

 

On dit alors que la force 𝐹⃗ dérive de l’énergie potentielle 𝐸𝑝,𝐹. 

 

L’énergie potentielle n’a de sens que par sa variation : elle est donc systématiquement déterminée à une constante 

près, qui peut être fixée arbitrairement. Cette constante est une référence qui n’a pas de signification physique. 

3.2. Energie mécanique – théorème de l’énergie mécanique 

Nous disposons maintenant des deux composantes de l’énergie mécanique : l’énergie cinétique et l’énergie 

potentielle. 

DEFINITION 

L’énergie mécanique 𝐸𝑚 d’un point matériel M soumis à un ensemble de forces 𝐹⃗𝑖 est la somme de son énergie 
cinétique et des énergies potentielles 

𝐸𝑚 = 𝐸𝑐 + 𝐸𝑝 
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A VOUS DE JOUER 

Soit un point matériel soumis à des forces conservatives et non conservatives. 

1. Rappeler le théorème de la puissance cinétique. 
 
 
 
 
 

2. Comment peut-on décomposer la de puissance de l’ensemble des forces ? 
 
 
 
 
 

3. En déduire une équation vérifiée par l’énergie mécanique du système. 

 

 

 

 

4. Intégrer cette dernière équation entre deux instants t1 et t2 pour obtenir une deuxième expression du 
théorème. 
 
 
 
 
 
 

 

THEOREME DE L’ENERGIE MECANIQUE 

Soit un point matériel M de masse m et de vitesse 𝑣⃗𝑀/ℛ dans un référentiel galiléen ℛ. Il est soumis à un 

ensemble de forces conservatives 𝐹⃗𝐶  et non conservatives 𝐹⃗𝑁𝐶dont la résultante est notée 𝐹⃗𝑡𝑜𝑡.  Alors l’énergie 
mécanique de M obéit à : 

𝑑𝐸𝑚

𝑑𝑡
= 𝒫𝑁𝐶 

Ou de manière équivalente : 

Δ𝐸𝑚 = 𝐸𝑚(𝑡2) − 𝐸𝑚(𝑡1) = 𝑊
𝐹⃗𝑁𝐶
1→2 

 

Le théorème de l’énergie mécanique est donc parfaitement équivalent au théorème de l’énergie cinétique. Dans un 
exercice, on peut donc appliquer soit l’un, soit l’autre, mais appliquer les deux serait redondant. 

 

Cas particulier d’un système conservatif 

Un système conservatif est un système soumis uniquement à des forces conservatives et / ou des forces non 

conservatives perpendiculaires au mouvement (donc qui ne travaillent pas). Dans ce cas on peut écrire : 

  
𝑑𝐸𝑚

𝑑𝑡
= 0 

Ce qui veut dire que l’énergie mécanique est alors une grandeur constante, qui se conserve au cours du temps. 
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Une autre manière de le montrer est d’appliquer le théorème de l’énergie cinétique : 

Δ𝐸𝑐 = 𝑊
𝐹⃗𝑡𝑜𝑡
1→2 

Comme toutes les forces sont conservatives elles dérivent toutes d’une énergie potentielle, et l’on peut écrire  

𝑊
𝐹⃗𝑡𝑜𝑡
1→2 = −Δ𝐸𝑝 

On a donc : 

Δ𝐸𝑐 = −Δ𝐸𝑝 

Soit  

Δ𝐸𝑚 = Δ𝐸𝑐 + Δ𝐸𝑝 = 0 

3.3. Exemples 

Energie potentielle de pesanteur 

En premier lieu, nous devons savoir si le poids est une force conservative. Si nous parvenons à trouver une fonction 

dont dérive l’expression mathématique de la force de pesanteur, nous aurons à la fois prouvé que le poids est une 

force conservative et déterminé l’énergie potentielle de pesanteur. 

En supposant que l’axe vertical est orienté vers le haut nous avons :  

𝑃⃗⃗ = −𝑚𝑔𝑢⃗⃗𝑧 

On peut ainsi calculer le travail élémentaire : 

𝛿𝑊𝑃⃗⃗ = 𝑃⃗⃗ ⋅ 𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗⃗ = −𝑚𝑔𝑑𝑧 

Il est donc possible d’exprimer ce travail sous la forme d’une différentielle, ce qui signifie qu’on peut déterminer une 

énergie potentielle en intégrant cette expression : 

𝑑𝐸𝑃𝑃 = −𝛿𝑊𝑃⃗⃗ = 𝑚𝑔𝑑𝑧 

Ce qui donne : 

𝐸𝑃𝑃(𝑧) = ∫ 𝑚𝑔𝑑𝑧 + 𝑐𝑠𝑡𝑒 

On aboutit finalement à : 

𝐸𝑃𝑃(𝑧) = 𝑚𝑔𝑧 + 𝑐𝑠𝑡𝑒 

 

La constante d’intégration peut être fixée arbitrairement. Si par exemple nous prenons comme référence l’origine du 

repère d’espace nous pouvons fixer 𝐸𝑃𝑃(0) = 0 et dans ce cas : 

𝐸𝑃𝑃(𝑧) = 𝑚𝑔𝑧 

Energie potentielle élastique 

La méthode est la même que précédemment. Prenons un ressort horizontal, de constante de raideur k, de longueur 

à vide l0. On peut alors écrire : 

𝐹⃗𝑒𝑙 = −𝑘(𝑙 − 𝑙0)𝑢⃗⃗𝑥 

 

On définit la variable x par : 𝑥 =  𝑙 − 𝑙0, ce qui permet d’écrire : 

𝐹⃗𝑒𝑙 = −𝑘𝑥𝑢⃗⃗𝑥 
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 A VOUS DE JOUER 

1. Déterminer l’énergie potentielle élastique 𝐸𝑃,𝑒𝑙(𝑥). 

 

 

 

 

 

2. On impose 𝐸𝑃,𝑒𝑙(0) = 0. Que devient l’expression de l’énergie potentielle ? 

 

 

 

 

 

4. Mouvement et points d’équilibre en 1 dimension  

 

Dans le cas de systèmes conservatifs, les théorèmes que l’on vient de voir peuvent nous permettre d’analyser le 

mouvement d’un point matériel de manière très simple à partir d’un graphe énergétique. Dans toute la suite, on se 

place dans le cas d’un système conservatif à une dimension. 

4.1. Un exemple pour commencer : le skatepark ! 

Vous êtes au skatepark, sur votre skateboard donc (ou rollers, trottinette, peu importe). On suppose que les 

frottements de la piste sont négligeables et donc que les forces sont conservatives. 

  
 

La rampe à une hauteur h = 2 m, vous partez d’en haut (point M0), sans vitesse initiale. Nous nous posons pour 

l’instant deux questions :  

▪ A quelle vitesse arrive-ton au point M1 ? 

▪ Est-ce suffisant pour atteindre ensuite le point M2 ? 

  L’application du théorème de l’énergie cinétique nous permet de répondre facilement à la première question : 

Δ𝐸𝑐 = 𝑊
𝐹⃗𝑡𝑜𝑡
1→2 

Ici seul le poids travaille puisque sans frottements la réaction du support est orthogonale à la trajectoire. 

On a donc : 

Δ𝐸𝑐 = −Δ𝐸𝑝𝑝 
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Soit : 

1

2
𝑚𝑣1

2 −
1

2
𝑚𝑣0

2 = 𝑚𝑔ℎ 

Comme la vitesse initiale est nulle : 
1

2
𝑣1

2 = 𝑔ℎ 

Soit encore : 𝑣1 = √2𝑔ℎ 

A VOUS DE JOUER 

1. Déterminer l’énergie mécanique du système en M0 

 

 

 

2. Déterminer l’énergie mécanique du système en M1. Conclusion ? 

 

 

 

3. Comment interpréter le passage de M0 en M1 en termes de conversion d’énergie ? 

 

 

 

4. Le système atteindra-t-il le point M2 ? Répondre en raisonnant sur l’énergie. 

 

 

 

5. Prévoir qualitativement l’évolution du système en tenant compte des frottements 

 

 

 

 

 

6. Montrer qu’en tout point Ep ≤ Em 
 
 
 
 
 

7. En déduire les points accessibles au système pour une énergie mécanique initiale Em0 
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En réalité, ce problème à deux dimensions peut être réduit à un problème à 1 dimension : la trajectoire étant 

imposée par la forme de la rampe, la valeur de z est imposée quel que soit x :  cette forme représente en fait la 

variation d’énergie potentielle Ep(x). En fait, on peut le considérer comme un profil énergétique : 

 

Sur le graphe ci-dessus, on représente l’énergie mécanique totale du système E1 par une droite horizontale. Les états 

(positions) accessibles au système sont ceux situés sous cette droite. Dans le cas d’un système conservatif, on 

assistera à des oscillations entre les deux positions extrêmes (nous étudierons cela dans le chapitre suivant). 

 

 

A VOUS DE JOUER 

Les deux courbes ci-dessous représentent le graphe d’énergie potentielle de deux systèmes conservatifs. Obtenir, 
dans les deux cas, les points accessibles lorsque l’énergie mécanique vaut Em = E1 puis Em = E2. 

 

 

 

 

A partir de l’analyse d’un graphe d’énergie potentielle d’un système conservatif, on peut décrire qualitativement le 

mouvement d’un système. On observe généralement :  

▪ Des oscillations entre deux points extrêmes ; on parle alors d’état lié.  

▪ Un déplacement jusqu’à l’infini ; on parle alors d’état libre, ou d’état de diffusion. 
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4.2. Point d’équilibre 

A VOUS DE JOUER 

Soit un système conservatif, soumis à une résultante de forces 𝐹⃗ = 𝐹(𝑥)𝑢⃗⃗𝑥. 
1. Que vaut la force au point d’équilibre 𝑥 = 𝑥𝑒𝑞 ? 

 
 
 
 

2. Rappeler le lien entre force et énergie potentielle  

 

 

3. En déduire une condition sur l’énergie potentielle pour être à l’équilibre. 

 

 

4. Que signifie ce résultat d’un point de vue géométrique ? 

 

 

 

 

Dans un système conservatif à une dimension (notons x cette dimension), on peut écrire la résultante des forces qui 

travaillent ainsi : 

𝐹⃗ = 𝐹(𝑥) ⋅ 𝑢⃗⃗𝑥 

Avec : 

𝐹(𝑥) = −
𝑑𝐸𝑝(𝑥)

𝑑𝑥
 

L’état d’équilibre correspondant à une résultante des forces nulles on peut en conclure qu’on a à l’équilibre : 

𝑑𝐸𝑝(𝑥)

𝑑𝑥
 

A RETENIR 

Les points d’équilibre 𝑥𝑒𝑞 d’un système conservatif à une dimension vérifient l’équation : 

(
𝑑𝐸𝑝(𝑥)

𝑑𝑥
)

𝑥=𝑥𝑒𝑞

= 0 

Graphiquement cela correspond à un extremum de l’énergie potentielle (minium ou maximum). 

 

Stabilité d’un point d’équilibre 

 DEFINITION 

▪ On dit qu’un point d’équilibre est stable si, lorsque le système est écarté de sa position d’équilibre, il revient 
à sa position initiale. On admettra que cela correspond à un minimum de l’énergie potentielle. 

▪ On dit qu’un point d’équilibre est instable si, lorsque le système est écarté de sa position d’équilibre, il 
s’éloigne définitivement de sa position initiale. On admettra que cela correspond à un maximum de l’énergie 
potentielle. 
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A VOUS DE JOUER 

Indiquer les positions d’équilibre sur les deux graphes suivants, et préciser s’il s’agit d’équilibres stables ou 
instables. 

 

 


