CHAPITRE 7/

Mécanique 3 — Approche énergétique

Au début du 19¢ siecle, on commence a découvrir de nombreux phénomenes de plus en plus difficiles a expliquer
avec les principes de la mécanique de Newton, en particulier la notion de gravitation universelle : électricité,
magnétisme, phénomenes thermiques, etc. Si les deux premiers phénomeénes peuvent s’expliquer par des forces, les
phénomeénes thermiques demandent d’autres concepts.

D’autre part, on s’est rendu compte que quelque chose dans la nature se conservait toujours lors d’'une
transformation (physique, chimique) : I'action mécanique se transforme en « chaleur » (I'appellation est impropre,
mais nous y reviendrons dans le cours de thermodynamique), I’électricité peut provoquer des réactions chimiques,
etc. Ce « quelque chose » qui se conserve au cours de toute transformation semblait étre un concept plus
fondamental que le concept de force. Les physiciens du XIXe siécle lui ont donné le nom d’énergie. Aujourd’hui, c’est
certainement le concept le plus important en physique, celui qui permet d’unifier tous les phénomenes. Pour
certains savants, tous les aspects du monde extérieur que nous percevons sont des manifestations différentes de
I'énergie.

Dans ce chapitre nous allons nous consacrer a I'énergie mécanique qui présente elle-méme différents aspects :
énergie cinétique et énergie potentielle.

1. Puissance et travail dans un référentiel

1.1. Puissance d’une force dans un référentiel

En physique, la puissance est I'énergie fournie a un systéeme donné par unité de temps (nous définirons le terme
énergie rigoureusement par la suite, assimilons la pour I'instant a la notion d’effort).

Prenons I'exemple d’un haltérophile. Demandons-lui de soulever un haltére de 50 kg jusqu’a une hauteur de 1 métre
en une seconde. Demandons lui ensuite d’effectuer le méme exercice en 5 secondes. On comprend intuitivement
gue cela requiert une puissance plus faible (méme si au final, I'effort total est le méme). Si on lui demande enfin de
soulever un haltére de 100 kg en une seconde, cela va au contraire lui demander deux fois plus de puissance. En
mécanique, la puissance est liée a la force a fournir (ici la force pour vaincre le poids de I’haltére) et la vitesse de
I’objet en mouvement.

DEFINITION

La puissance d’une force F qui s’exerce sur un point matériel de vitesse T})M/gg dans un référentiel R est donnée
par la relation :

La puissance s’exprime en Watts (1W = 1 J.s?) et dépend du référentiel choisi.
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Dans le cas de I’haltérophile, la force est motrice : il met un haltére en mouvement (plus ou moins vite) ; en d’autres
termes, la force gu’il exerce est dans le méme sens que la vitesse de I’haltere (vers le haut). Dans ce cas on constate
que la puissance ?ﬁ/ye est positive. Cela signifie qu’on fournit de I’énergie a I'haltere.

Mais une force peut aussi étre résistante : par exemple une force de frottement. Dans ce cas la vitesse de |'objet et
la force sont de sens opposés et donc la puissance ?ﬁ/yz est négative. Cela signifie qu’on retire de I'énergie au

systéme, en d’autres termes c’est lui qui nous fournit de I'énergie : dans le cas du frottement, la manifestation de
cette énergie est par exemple I'élévation de température (exemple : lorsqu’on se frotte les mains).

1.2. Travail d’une force dans un référentiel

Nous avons vu que la puissance était une notion instantanée, elle se définit a un instant donné. Le travail d’une force
se définit sur une durée donnée, par exemple entre deux instants t et t+dt. Elle peut, ce qui revient au méme, étre

également définie par rapport au déplacement dOM du systéme étudié pendant cette durée.

DEFINITION

= Le travail élémentaire d’une force F qui s’exerce entre les instants t et t+dt sur un point matériel M dans un
référentiel R est donné par la relation :

SWpp = F - dOM

Le travail s’exprime en Joules (1 J = 1 N.m) et dépend du référentiel choisi.

Il est également possible d’exprimer le travail en fonction du temps infinitésimal dt :
c?Wﬁ/72 = Ppp - dt

Eneffet: Wz = F - dOM = F - Gy pdt = Pp 1 - dt

= Le travail total de cette force entre deux instants t; (ou le systéme est en M;) et t, (ou le systeme est en M,)
s’écrit donc:

My—M Mz
2 1=y SW =
F M, F
MZ_)
= f F-dOM
Mq

ATTENTION

Il ne faut pas confondre :
= Le symbole dX qui correspond a la notion mathématique de différentielle d’'une fonction X. La grandeur
dX doit étre interprétée comme une petite variation de la grandeur X.
= Le symbole §X qui n’a pas de signification mathématique : il signifie 'apport d’'une petite quantité de la
grandeur X qui n’est pas une fonction.

Le travail élémentaire se note W et non dW car le travail n’est pas une fonction, donc §W n’est pas une
différentielle. Le travail a un instant donné ou en un point donné n’a pas de sens : le travail n’a de sens qu’entre
deux points ou deux instants. En particulier le travail pour aller d’un point M; a un point M, dépend du chemin
suivi.

Cela n’aurait pas de sens d’écrire fnl:lz oW =wWWm,) - W)
1
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2. Théoremes de la puissance cinétique et de I'énergie cinétique

2.1. Energie cinétique

L’énergie cinétique est une composante de I'énergie mécanique : c’est sa manifestation sous forme de mouvement
(nous verrons qu’il existe une autre composante de I'énergie mécanique, plus cachée). Un projectile, par exemple,
possede d’autant plus d’énergie, c’est-a-dire qu’il fera d’autant plus de dégats, que sa masse et sa vitesse seront
grandes.

DEFINITION

Soit un point M de masse m se déplagant a une vitesse 13M/3e dans un référentiel R. On définit I’énergie cinétique
du point matériel M comme :

1

E, = ~mv?
¢ =5mv

Avec v2 = ||z

L’énergie cinétique s’exprime en Joules (1) = 1 kg.m?%.s2).

2.2. Théoréme de la puissance cinétique

A VOUS DE JOUER

> >

. . s , . dE
1. Montrer que la dérivée de I'énergie cinétique s’écrit d—tc =mv-a

s . dE,
2. Ense basant surle PFD, montrer qu’on aboutit a :d—tc = Pitor

THEOREME DE LA PUISSANCE CINETIQUE

Soit un point M de masse m se déplagant a une vitesse 5M/7z dans un référentiel galiléen R et soumis a un
ensemble de forces extérieures dont la résultante est notée F;,;. On a alors :

dE,
=Pp
dt ot

Le théoreme de la puissance cinétique constitue une alternative au PFD pour trouver I’équation du mouvement. ||
permettra dans certains cas de simplifier les calculs ou d’arriver plus vite au résultat voulu.
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2.3. Théoreme de I’énergie cinétique

A VOUS DE JOUER

Intégrer le théoreme de la puissance cinétique entre deux instants t; et t,. En déduire une deuxiéme version du
théoréme précédent, appelée théoreme de I'énergie cinétique.

THEOREME DE LA PUISSANCE CINETIQUE

Soit un point M de masse m se déplagant a une vitesse 771\/1/72 dans un référentiel galiléen R et soumis a un
>
ensemble de forces extérieures dont la résultante est notée Fy,;.

La variation de I'énergie cinétique du point M entre deux instants t; et t, vaut :

_ 1-2
AE, = Wﬁtat

Cette loi sert généralement a obtenir des relations entre les grandeurs cinétiques (norme de la vitesse, hauteur,
angle...) entre deux instants donnés.

2.4. Retour sur les significations physiques de la puissance et du travail

A VOUS DE JOUER

1. Ense basant sur le théoreme de I'énergie cinétique, expliquer comment varie I'énergie cinétique lorsque
Wior > 0, lorsque Wy, < 0 et enfin lorsque Wy, = 0.

2. En déduire lI'interprétation physique du travail d’une force.

3. Ense basant sur le lien entre travail et puissance d’une force, proposer une interprétation physique de la
puissance d’une force.
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A RETENIR

= Le travail élémentaire I s’interpréte comme étant la quantité infinitésimale d’énergie fournie
algébriquement au systeme via la force lors du déplacement infinitésimal.

- Le systéme regoit de I'énergie lorsque W > 0
- Le systéme perd de I'énergie lorsque W < 0
- Le systéme conserve une énergie cinétique constante lorsque SW = 0

Le travail W1™?2 correspond a I’énergie totale fournie algébriquement au systéme au cours de son
déplacement du point M; (en t1) au point M, (en t5).

Le travail W1~2 dépendant du chemin suivi, I'énergie fournie au systeme dépend donc de la trajectoire !

= La puissance correspond a un débit d’énergie :

W
T odt

La puissance correspond a la quantité d’énergie fournie algébriquement au systéme par unité de temps :
- Le systéme regoit de I'énergie lorsque P > 0

- Le systéme perd de I'énergie lorsque P < 0
- Le systéme conserve une énergie constante lorsque P = 0

3. Energie potentielle et énergie mécanique

3.1. Energie potentielle

L’énergie cinétique n’est en fait qu’une composante de I'’énergie mécanique : elle est sa forme la plus manifeste,
lorsque le systeme est en mouvement. Mais il existe une autre forme d’énergie, plus « cachée » : un systéeme peut
étre au repos et disposer d’un « stock » d’énergie susceptible d’étre converti en énergie cinétique.

La voiture sur les montagnes russes est immobile. La fleche est immobile au moment ou I'archer se

Cependant, par sa hauteur méme, elle possede une prépare ... cependant I’arc est tendu : cela constitue

certaine capacité a acquérir un mouvement. Les également une réserve d’énergie !
passagers, a ce moment, le comprennent !

Cette réserve d’énergie est appelée énergie potentielle. Elle peut potentiellement se convertir en énergie cinétique :
lorsqu’on lache les freins de la voiture dans les montagnes russes, ou lorsque I'archer lache la corde de I’arc. On voit
que I'énergie potentielle est associée a une certaine force : force de pesanteur dans le premier cas, force de rappel
élastique dans le deuxiéme. On dit (et on le comprendra plus bas) que la force dérive d’une énergie potentielle.

ATTENTION

On ne peut pas associer une énergie potentielle a toutes les forces.
Seules les forces dites conservatives dérivent d’'une énergie potentielle.
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DEFINITIONS
Une force F est dite conservative si son travail entre deux points ng*MZ ne dépend pas du chemin suivi.
Dans ce cas, le travail peut étre écrit sous la forme de la variation d’une fonction :
Wit = —AE,

F

La fonction E,,  est appelée énergie potentielle. On peut également écrire :

—_—

Wz =F-dOM = —dE,

En utilisant les coordonnées cartésiennes, on peut détailler les deux membres de I'égalité précédente :

F-dOM = F.dx + E,dy + F,dz

B LA T - N L
»“\%x ) P\ ) PH\% ) ¢
v,z X,Z X,y

Par identification, nous avons donc pour un déplacement élémentaire (dx, dy,dz) :

0E OE. OE.
F=—[-F CE=—Z=2) .p=—[ZP
¥ (6x> Y <6y> o <az>
v,z X,z X,y

A RETENIR

Dans un probléme a un degré de liberté noté x on aura :

E, = E,(x)
F= F(x) - u,
Par conséquent :
dE,(x
FlO) = »(X)
dx

On dit alors que la force F dérive de I’énergie potentielle Ey, ¢.

L’énergie potentielle n’a de sens que par sa variation : elle est donc systématiquement déterminée a une constante
prés, qui peut étre fixée arbitrairement. Cette constante est une référence qui n’a pas de signification physique.

3.2. Energie mécanique - théoréme de ’énergie mécanique

Nous disposons maintenant des deux composantes de I'énergie mécanique : I'énergie cinétique et I'énergie
potentielle.

DEFINITION

S
L’énergie mécanique E,,, d'un point matériel M soumis a un ensemble de forces F; est la somme de son énergie
cinétique et des énergies potentielles

Epm =E.+E,
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A VOUS DE JOUER
Soit un point matériel soumis a des forces conservatives et non conservatives.

1. Rappeler le théoreme de la puissance cinétique.

2. Comment peut-on décomposer la de puissance de I'ensemble des forces ?

3. En déduire une équation vérifiée par I'énergie mécanique du systeme.

4. Intégrer cette derniere équation entre deux instants t1 et t2 pour obtenir une deuxiéme expression du
théoréme.

THEOREME DE L’ENERGIE MECANIQUE

Soit un point matériel M de masse m et de vitesse ﬁM/R dans un référentiel galiléen R. Il est soumis a un

ensemble de forces conservatives F¢ et non conservatives FV¢dont la résultante est notée F,.. Alors I'énergie
mécanique de M obéit a :

d& = PpNC
dt

Ou de maniére équivalente :

AEy = En(t2) — En(ty) = ﬁ11762

Le théoreme de I’énergie mécanique est donc parfaitement équivalent au théoréme de I’énergie cinétique. Dans un
exercice, on peut donc appliquer soit I'un, soit I'autre, mais appliquer les deux serait redondant.

Cas particulier d’un systeme conservatif

Un systéme conservatif est un systéme soumis uniquement a des forces conservatives et / ou des forces non
conservatives perpendiculaires au mouvement (donc qui ne travaillent pas). Dans ce cas on peut écrire :

dE,,
- = 0
dt
Ce qui veut dire que I'énergie mécanique est alors une grandeur constante, qui se conserve au cours du temps.
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Une autre maniere de le montrer est d’appliquer le théoreme de I'énergie cinétique :

_ 1-2
AE, = Wﬁtot

Comme toutes les forces sont conservatives elles dérivent toutes d’une énergie potentielle, et I'on peut écrire

Wﬁlt_z;? = —AE,
Onadonc:

AE. = —AE,
Soit

AE,, = AE, + AE, = 0
3.3. Exemples

Energie potentielle de pesanteur

En premier lieu, nous devons savoir si le poids est une force conservative. Si nous parvenons a trouver une fonction
dont dérive I'expression mathématique de la force de pesanteur, nous aurons a la fois prouvé que le poids est une
force conservative et déterminé I'énergie potentielle de pesanteur.

En supposant que I'axe vertical est orienté vers le haut nous avons :

—

P = —mgu,
On peut ainsi calculer le travail élémentaire :

W5 =P -dOM = —mgdz

Il est donc possible d’exprimer ce travail sous la forme d’une différentielle, ce qui signifie qu’on peut déterminer une
énergie potentielle en intégrant cette expression :

dEpp = —6Wj5 = mgdz
Ce qui donne :
Epp(2) = fmgdz + cste

On aboutit finalement a :

Epp(z) = mgz + cste

La constante d’intégration peut étre fixée arbitrairement. Si par exemple nous prenons comme référence I'origine du
repére d’espace nous pouvons fixer Epp(0) = 0 et dans ce cas :

Epp(z) = mgz
Energie potentielle élastique

La méthode est la méme que précédemment. Prenons un ressort horizontal, de constante de raideur k, de longueur
a vide lo. On peut alors écrire :
Fop = —k(l - lo)ﬁx
(k,€p)
.:;/ _H, __/"\’_/"\ -"\:/"\lf/'\,"‘x -

On définit la variable x par : x = [ — [, ce qui permet d’écrire :
ﬁel = _kxizx
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A VOUS DE JOUER

1.  Déterminer I'énergie potentielle élastique Ep ¢; ().

2. Onimpose Ep ¢ (0) = 0. Que devient I'expression de |'énergie potentielle ?

4. Mouvement et points d’équilibre en 1 dimension

Dans le cas de systémes conservatifs, les théorémes que I'on vient de voir peuvent nous permettre d’analyser le
mouvement d’un point matériel de maniere tres simple a partir d’'un graphe énergétique. Dans toute la suite, on se
place dans le cas d’un systeme conservatif a une dimension.

4.1. Un exemple pour commencer : le skatepark !

Vous étes au skatepark, sur votre skateboard donc (ou rollers, trottinette, peu importe). On suppose que les
frottements de la piste sont négligeables et donc que les forces sont conservatives.

X3 X3 X

La rampe a une hauteur h =2 m, vous partez d’en haut (point Mg), sans vitesse initiale. Nous nous posons pour
I'instant deux questions :

= A quelle vitesse arrive-ton au point My ?
= Est-ce suffisant pour atteindre ensuite le point M, ?

L'application du théoréme de I'énergie cinétique nous permet de répondre facilement a la premiére question :
_ 1-2
AE, = Wﬁtot

Ici seul le poids travaille puisque sans frottements la réaction du support est orthogonale a la trajectoire.

Onadonc:

AE, = —AE,,
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Soit :

1 21 2
Emvl —Emvo =mgh

. L 1
Comme la vitesse initiale est nulle 157712 =gh

Soit encore : v; = ,/2gh

A VOUS DE JOUER

1. Déterminer I'énergie mécanique du systéme en Mg

2. Déterminer I'énergie mécanique du systeme en Mj. Conclusion ?

3. Comment interpréter le passage de Mo en M; en termes de conversion d’énergie ?

4. Le systeme atteindra-t-il le point M, ? Répondre en raisonnant sur I'énergie.

5.  Prévoir qualitativement I'’évolution du systéeme en tenant compte des frottements

6. Montrer qu’en tout point Ep < Em

7. En déduire les points accessibles au systéme pour une énergie mécanique initiale Emg
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En réalité, ce probleme a deux dimensions peut étre réduit a un probléme a 1 dimension : la trajectoire étant
imposée par la forme de la rampe, la valeur de z est imposée quel que soit x : cette forme représente en fait la
variation d’énergie potentielle Eg(x). En fait, on peut le considérer comme un profil énergétique :

L Ep(x)

X3

Sur le graphe ci-dessus, on représente I'énergie mécanique totale du systeme E; par une droite horizontale. Les états
(positions) accessibles au systéme sont ceux situés sous cette droite. Dans le cas d’un systéme conservatif, on
assistera a des oscillations entre les deux positions extrémes (nous étudierons cela dans le chapitre suivant).

A VOUS DE JOUER

Les deux courbes ci-dessous représentent le graphe d’énergie potentielle de deux systemes conservatifs. Obtenir,
dans les deux cas, les points accessibles lorsque I'énergie mécanique vaut En, = E; puis En, = Ea.

A partir de I'analyse d’un graphe d’énergie potentielle d’un systéme conservatif, on peut décrire qualitativement le
mouvement d’un systéme. On observe généralement :

Des oscillations entre deux points extrémes ; on parle alors d’état lié.
Un déplacement jusqu’a I'infini ; on parle alors d’état libre, ou d’état de diffusion.
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4.2. Point d’équilibre

A VOUS DE JOUER

Soit un systéme conservatif, soumis a une résultante de forces F = F(x)uU,.
1. Que vaut la force au point d’équilibre x = x,q ?

2. Rappeler le lien entre force et énergie potentielle

3. En déduire une condition sur I'énergie potentielle pour étre a I'équilibre.

4. Que signifie ce résultat d’un point de vue géométrique ?

Dans un systéme conservatif a une dimension (notons x cette dimension), on peut écrire la résultante des forces qui
travaillent ainsi :

F=F(x) 1,
Avec:
dE,(x)
F(x) = ——P7

L’état d’équilibre correspondant a une résultante des forces nulles on peut en conclure qu’on a a I'équilibre :

dE,(x)
dx

A RETENIR

Les points d’équilibre x,, d’un systeme conservatif a une dimension vérifient I'équation :

dE,(x) B
( dx >x=x =0

Graphiquement cela correspond a un extremum de I'énergie potentielle (minium ou maximum).

Stabilité d’un point d’équilibre

DEFINITION

=  Ondit qu’un point d’équilibre est stable si, lorsque le systeme est écarté de sa position d’équilibre, il revient
a sa position initiale. On admettra que cela correspond a un minimum de I'énergie potentielle.

=  Ondit qu’un point d’équilibre est instable si, lorsque le systeme est écarté de sa position d’équilibre, il
s’éloigne définitivement de sa position initiale. On admettra que cela correspond a un maximum de I’énergie
potentielle.
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A VOUS DE JOUER

Indiquer les positions d’équilibre sur les deux graphes suivants, et préciser s’il s’agit d’équilibres stables ou

instables.
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