CHAPITRE 8

Mécanique 4 — Oscillateurs en régime libre

De nombreux systemes mécaniques soumis a une force conservative ont, pres de leur point d’équilibre, un
mouvement d’oscillation sinusoidal ou quasi-sinusoidal. Nous allons montrer que ce comportement, en fait tres
général, est régi par I’équation dite de 'oscillateur harmonique, déja rencontrée dans le cours d’électricité.

Dans ce chapitre nous nous concentrerons sur des systémes mécaniques simples dont le comportement idéal
correspond, de maniére exacte ou approchée, a celui d’un oscillateur harmonique. Nous ajouterons ensuite un
amortissement pour prendre en compte les frottements de type fluide et étudierons les différents régimes qui en
découlent.

Ce chapitre se limitera au cas des oscillateurs a un degré de liberté et en régime libre (i.e. sans forcage extérieur).

1. Oscillations d’'un systeme masse-ressort sans amortissement

1.1. Equation du mouvement

On considere une masse attachée a un ressort horizontal de longueur |y et de raideur k, fixé a son autre extrémité en
0. On note (Ox) I'axe horizontal et on admet que la masse est astreinte a se mouvoir uniquement selon cet axe. On
place I'origine a I'endroit ol se situe la masse lorsque le ressort est a sa longueur a vide : x=I-lo.

(k,€p)
S, M

Supposons qu’on écarte la masse de sa position d’équilibre de maniére a ce que x(t=0) = xo et qu’on le lache sans
vitesse initiale. Quelle est I’évolution de x au cours du temps ?

Utilisation du PFD

Le systéme étudié est la masse attachée au ressort, et nous supposons que sur la durée de I'expérience le référentiel
terrestre peut étre considéré comme galiléen.

Bilan des forces :

La masse est soumis a :

= Son poids P
= Laréaction du support R (normale puisqu’on néglige les frottements)
= Laforce de rappel du ressort ﬁel : ﬁel = —kx,

Application du PFD :
miyyn = ) Fiow =P +R + o
i

Projection sur 1, : seule la force élastique a une composante non nulle sur I'axe Ox, les autres étant perpendiculaires
alaxe:

mx = —kx
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On peut réécrire I'’équation sous sa forme canonique :

,k
Avec wgy = -

Nous reconnaissons I'équation de I'oscillateur harmonique, déja rencontrée en électricité.

¥+ we?x=0

Méthode énergétique

Le théoreme de la puissance cinétique permet d’arriver au méme résultat :

dE,
=Py
dt ot
1 . = - . .
AvecE, = mez et Paror = Prer = Fer - Vmyr = = —kxx (les autres forces ne travaillent pas)
Onadonc:
1 .
d (? mxz)
= —kxx
dt
Soit encore :
mxi = —kxx

On peut simplifier par x a condition qu’il ne soit pas toujours nul, ce qu’on peut supposer s’il y a mouvement :
mi = —kx

Et nous retrouvons a nouveau I'équation de I'oscillateur harmonique.

1.2. Résolution de I’équation

RAPPEL

L’équation de I'oscillateur harmonique est une équation différentielle du second ordre. Elle admet la solution
générale suivante :

x(t) = A-cos(wpt) + B - sin(wyt)

Ou A et B sont des constantes a déterminer a I'aide des conditions initiales.

Détermination des constantes A et B

La détermination des deux constantes se fait en utilisant les conditions initiales définies précédemment :
x(0) = xy = A.cos(0) + B.sin(0) = 4
v(0)=0= %(0) = —A. wy.sin(0) + Bwy cos(0) = Bw,

Onadonc:

(2%

Soit :

x(t) = x - cos(wgt)

Page 2 sur 10



. . . ;. 2m
On a donc un mouvement sinusoidal d’amplitude x, et de période T, = —
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Rappelons ce qui a été vu a la fin du chapitre précédent. On a vu qu’un systéme conservatif a une dimension pouvait
s’étudier a partir de son graphe d’énergie potentielle. Ici E}, o; = Ekxz, ce que I'on peut représenter

graphiquement :

L’énergie mécanique se conserve puisque le systéme est conservatif. Or a I'instant initial celle-ci est réduite a son
énergie potentielle puisqu’il n’y a pas de vitesse initiale : E; = Ekxg ; cette énergie permet de représenter les points

accessibles au systeme : ceux qui sont sous la droite d’ordonnée E.

Lors de ce mouvement, il y a en permanence conversion d’énergie potentielle élastique en énergie cinétique, puis
conversion d’énergie cinétique en énergie élastique, etc.

2. Oscillations d'un systéeme masse-ressort avec amortissement

Dans ce cas il y aura dissipation de I’énergie, comme nous I'avons vu en introduisant une résistance dans le circuit
LC. Cette dissipation conduira a une diminution de I'énergie totale (ici énergie mécanique) pour atteindre un minium
de cette énergie (régime permanent). En effet I'énergie cinétique ne peut que décroitre au cours du temps comme le
montre le théoréme de la puissance mécanique :

dEy

— =Ppnc <0
dt NC
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Le pourquoi de I'amortissement est donc connu. Nous allons ici détailler le comment, en déterminant la nouvelle
expression de x(t).

2.1. Equation du mouvement

Dans le cas des oscillations amorties, une nouvelle force vient s’ajouter : |la force de frottements, que nous
supposons du type frottements fluides. C’'est en raison de la dissipation de I'énergie par cette force non conservative
qgue I'on observera un phénomene d’amortissement : en régime permanent, I’oscillateur est retourné a sa position
d’équilibre et sa vitesse est nulle. Cependant, comme nous I’avons vu en électricité, plusieurs régimes sont possibles.

Nous reprenons I’étude précédente au niveau du bilan des forces, et nous écrivons le PFD comme suit :
N - =g g - -
may g = ) Fiomy =P+ R+ fprp + Fy
i

Avec :

4 _ - _ . -
frr = —AVpy /R = —OX Uy
Cela ajoute un nouveau terme lorsqu’on projette sur I'axe Ox :

mi = —kx — ax

On retrouve alors une équation qui, mise sous forme canonique, a déja été vue en électricité lors de I'étude des
régimes amortis, caractérisés par le terme d’ordre 1 :

Wy

x+Q

X+ welx =0
Que I'on peut également écrire :
¥+—%+wy?x=0
T
Ou 7, homogene a un temps est appelé temps de relaxation de I'énergie.

Onadonc:

(1)0= -
m

m
T=—
a

Q =wyt

On rappelle que Q est appelé facteur de qualité.

A VOUS DE JOUER

Retrouver I’équation du mouvement par une approche énergétique
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2.2. Résolution de I’équation

On rappelle la méthode de résolution de ce type d’équation, déja rencontrée lors des régimes amortis en électricité.

1. Ecrire I'équation caractéristique, qui est un polyndme du second degré avec les mémes coefficients :
Dans notre cas :

w
r2+60-r+w02=0

2. Calculer le discriminant de I’équation caractéristique :

2
Wy 1
A= ?— 4.0)02 = (4)02(@

3. Selon la valeur du discriminant on distingue 3 régimes possibles :

—4)

= SiA>0,s0itQ < " le régime est apériodique
L'équation caractéristique admet deux solutions réelles r; et r,

La solution générale de I’équation différentielle est de la forme :
x(t) = A-e"t + B - e™! ou A et B sont des constantes a déterminer (conditions initiales)

= SiA=0,s0itQ = % : le régime est critique
L’équation caractéristique admet une solutions réelles r
La solution générale de I'équation différentielle est de la forme :
x(t) = (At + B) - e" ou A et B sont des constantes a déterminer (conditions initiales)

= SiA<O0,soitQ > % : le régime est pseudo-périodique
L'équation caractéristique admet deux solutions complexes r;et 1, que I'on note :
n=u+t+ivetrn=u—ILv
La solution générale de I'équation différentielle est de la forme :
x(t) = e* - (A-cosvt + B - sinvt) ol A et B sont des constantes a déterminer (conditions initiales)

Détaillons maintenant les constantes dans les différents régimes.
| P
Q< 5+ régime apériodique

Les deux solutions sont les suivantes, on peut vérifier qu’elles sont toutes les deux négatives :

—%+\/Z —%—\/Z
Tl == et Tz -
2
Onadonc:

qit)y =A-ent +B-e™t
Les constantes A et B peuvent étre déduites des conditions initiales :

{x(O) =xy=A+B
v(0) =0=1rA+nB

La résolution de ce systéme a deux équations et deux inconnues donne :

XoT2
A=
L ]
XoT1
B =
n—n

L'allure de I’évolution de g (et des autres grandeurs du circuit) est la suivante :
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régime apériodique
3.0 === régime critique

z(t)

| arst
Q= 2 : regime critique

La solution est la suivante :
Wy
2Q

Par conséquenton a:

r =

Wo

x(t) = (At +B)-e 2Q

-t

L’allure du régime critique est la méme que celle du régime apériodique : on rappelle qu’il correspond au retour au
repos le plus rapide.

Q> % : régime pseudo-périodique

Les racines de I'équation caractéristique sont du type :

2 1
Posons : T = -2 et w = w, /1——2
Wo 4Q

(A - coswt + B - sinwt)

e

Onaalors:x(t) = e~

x(t)

T
0 T r 3ar T 5T 6r T 8T
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3. Oscillation d’'un pendule simple sans amortissement

3.1. Equation du mouvement

Une masse ponctuelle m est accrochée a I'extrémité d’un fil inextensible et sans masse de longueur |, attachée a un
point O fixe dans le référentiel d’étude supposé galiléen. Le mouvement est repéré par I'angle orienté que fait la
direction du fil (supposé tendu a tout instant) avec la verticale descendante. On choisit comme base d’étude la base
polaire :

2
Y

A l'instant initial, la masse M est écartée de son point d’équilibre d’un angle 6, puis lachée sans vitesse initiale. Il
s’agit cette fois de déterminer I’évolution de 8 au cours du temps.

A VOUS DE JOUER

1. Faire le bilan des forces sur la masse. On supposera négligeable toute force de frottement.

2. Appliquer le PFD et le projeter dans la base polaire.

3.  En déduire I'’équation du mouvement.

4. Que devient cette équation dans I’hypothése des petits angles ? Mettre cette équation sous forme
canonique. Dans I’hypothése des petits angles on peut poser : sinf =~ tan 8 = 6 (a retenir !)
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5. Retrouver cette équation a partir d’'une approche énergétique.

3.2. Résolution de I’équation

A VOUS DE JOUER

Résoudre I'équation du mouvement et déterminer 6(t)
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4. Oscillation d’'un pendule simple avec amortissement

4.1. Equation du mouvement

On suppose désormais I'existence de frottements de type fluides.

A VOUS DE JOUER

6. Faire le bilan des forces sur la masse.

7. Appliquer le PFD et le projeter dans la base polaire.

8. En déduire I'’équation du mouvement.

9. Que devient cette équation dans I’hypothese des petits angles ? Mettre cette équation sous forme
canonique. Dans I’hypothése des petits angles on peut poser : sinf =~ tan 8 = 6 (a retenir !)

10. Retrouver cette équation a partir d’'une approche énergétique.
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4.2. Résolution de I'’équation

Résoudre I'équation du mouvement et déterminer 8(t) en indiquant les régimes possibles et leur représentation

graphique.

A VOUS DE JOUER
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