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CHAPITRE 8 

Mécanique 4 – Oscillateurs en régime libre 
De nombreux systèmes mécaniques soumis à une force conservative ont, près de leur point d’équilibre, un 
mouvement d’oscillation sinusoïdal ou quasi-sinusoïdal. Nous allons montrer que ce comportement, en fait très 
général, est régi par l’équation dite de l’oscillateur harmonique, déjà rencontrée dans le cours d’électricité.  

Dans ce chapitre nous nous concentrerons sur des systèmes mécaniques simples dont le comportement idéal 
correspond, de manière exacte ou approchée, à celui d’un oscillateur harmonique. Nous ajouterons ensuite un 
amortissement pour prendre en compte les frottements de type fluide et étudierons les différents régimes qui en 
découlent. 

Ce chapitre se limitera au cas des oscillateurs à un degré de liberté et en régime libre (i.e. sans forçage extérieur). 

 

1. Oscillations d’un système masse-ressort sans amortissement 
 

1.1. Equation du mouvement 

On considère une masse attachée à un ressort horizontal de longueur l0 et de raideur k, fixé à son autre extrémité en 
O. On note (Ox) l’axe horizontal et on admet que la masse est astreinte à se mouvoir uniquement selon cet axe. On 
place l’origine à l’endroit où se situe la masse lorsque le ressort est à sa longueur à vide : x=l-l0. 

 

Supposons qu’on écarte la masse de sa position d’équilibre de manière à ce que x(t=0) = x0 et qu’on le lâche sans 
vitesse initiale. Quelle est l’évolution de x au cours du temps ? 

Utilisation du PFD 

Le système étudié est la masse attachée au ressort, et nous supposons que sur la durée de l’expérience le référentiel 
terrestre peut être considéré comme galiléen. 

Bilan des forces : 

La masse est soumis à : 

§ Son poids 𝑃"⃗  
§ La réaction du support 𝑅"⃗  (normale puisqu’on néglige les frottements) 
§ La force de rappel du ressort 𝐹⃗!" ∶ 	 𝐹⃗!" = −𝑘𝑥𝑢"⃗ # 

Application du PFD :  

𝑚𝑎⃗$/ℛ =/𝐹⃗'→$
'

= 𝑃"⃗ + 𝑅"⃗ + 𝐹⃗!"  

Projection sur 𝑢"⃗ #	: seule la force élastique a une composante non nulle sur l’axe Ox, les autres étant perpendiculaires 
à l’axe : 

𝑚𝑥̈ = −𝑘𝑥 
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On peut réécrire l’équation sous sa forme canonique : 

𝑥̈ +	𝜔)*𝑥 = 0 

Avec 𝜔) = 4+
,

 

 
Nous reconnaissons l’équation de l’oscillateur harmonique, déjà rencontrée en électricité. 

Méthode énergétique 

Le théorème de la puissance cinétique permet d’arriver au même résultat : 

𝑑𝐸-
𝑑𝑡

= 𝒫.⃗010 

Avec 𝐸- =
2
*
𝑚𝑥̇* et 𝒫.⃗010 = 𝒫.⃗!" = 𝐹⃗!" ⋅ 𝑣⃗$/ℛ =  = −𝑘𝑥𝑥̇ (les autres forces ne travaillent pas) 

On a donc : 

𝑑 <12𝑚𝑥̇
*?

𝑑𝑡
= −𝑘𝑥𝑥̇ 

Soit encore : 

𝑚𝑥̇𝑥̈ = −𝑘𝑥𝑥̇ 

On peut simplifier par 𝑥̇ à condition qu’il ne soit pas toujours nul, ce qu’on peut supposer s’il y a mouvement : 

𝑚𝑥̈ = −𝑘𝑥 

Et nous retrouvons à nouveau l’équation de l’oscillateur harmonique. 

 

1.2. Résolution de l’équation 

RAPPEL 

L’équation de l’oscillateur harmonique est une équation différentielle du second ordre. Elle admet la solution 
générale suivante : 

𝑥(𝑡) = 𝐴 ⋅ cos(𝜔)𝑡) + 𝐵 ⋅ sin(𝜔)𝑡) 

Où A et B sont des constantes à déterminer à l’aide des conditions initiales.  

 
Détermination des constantes A et B 

La détermination des deux constantes se fait en utilisant les conditions initiales définies précédemment : 

I
𝑥(0) = 𝑥) = 𝐴. cos(0) + 𝐵. sin(0) = 𝐴

𝑣(0) = 0 =
𝑑𝑥
𝑑𝑡
(0) = −𝐴.𝜔). sin(0) + 𝐵𝜔) cos(0) = 𝐵𝜔)

 

On a donc : 

K𝐴 = 𝑥)
𝐵 = 0  

Soit : 

𝑥(𝑡) = 𝑥) ⋅ cos(𝜔)𝑡) 
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On a donc un mouvement sinusoïdal d’amplitude 𝑥) et de période 𝑇) =
*3
4!

.  

 

Rappelons ce qui a été vu à la fin du chapitre précédent. On a vu qu’un système conservatif à une dimension pouvait 
s’étudier à partir de son graphe d’énergie potentielle. Ici 𝐸5,!" =

2
*
𝑘𝑥*, ce que l’on peut représenter 

graphiquement : 

 

L’énergie mécanique se conserve puisque le système est conservatif. Or à l’instant initial celle-ci est réduite à son 
énergie potentielle puisqu’il n’y a pas de vitesse initiale : 𝐸) =

2
*
𝑘𝑥)* ; cette énergie permet de représenter les points 

accessibles au système : ceux qui sont sous la droite d’ordonnée 𝐸). 

Lors de ce mouvement, il y a en permanence conversion d’énergie potentielle élastique en énergie cinétique, puis 
conversion d’énergie cinétique en énergie élastique, etc. 

2. Oscillations d’un système masse-ressort avec amortissement 
 
Dans ce cas il y aura dissipation de l’énergie, comme nous l’avons vu en introduisant une résistance dans le circuit 
LC. Cette dissipation conduira à une diminution de l’énergie totale (ici énergie mécanique) pour atteindre un minium 
de cette énergie (régime permanent). En effet l’énergie cinétique ne peut que décroître au cours du temps comme le 
montre le théorème de la puissance mécanique : 

𝑑𝐸$
𝑑𝑡

= 𝒫78 < 0 
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Le pourquoi de l’amortissement est donc connu. Nous allons ici détailler le comment, en déterminant la nouvelle 
expression de x(t). 

2.1. Equation du mouvement 

Dans le cas des oscillations amorties, une nouvelle force vient s’ajouter : la force de frottements, que nous 
supposons du type frottements fluides. C’est en raison de la dissipation de l’énergie par cette force non conservative 
que l’on observera un phénomène d’amortissement : en régime permanent, l’oscillateur est retourné à sa position 
d’équilibre et sa vitesse est nulle. Cependant, comme nous l’avons vu en électricité, plusieurs régimes sont possibles. 

Nous reprenons l’étude précédente au niveau du bilan des forces, et nous écrivons le PFD comme suit : 

𝑚𝑎⃗$/ℛ =/𝐹⃗'→$
'

= 𝑃"⃗ + 𝑅"⃗ + 𝑓.. + 𝐹⃗!"  

Avec : 

𝑓.. = −𝛼𝑣⃗$/ℛ = −𝛼𝑥̇	𝑢"⃗ # 

Cela ajoute un nouveau terme lorsqu’on projette sur l’axe Ox :  

𝑚𝑥̈ = −𝑘𝑥 − 𝛼𝑥̇ 

On retrouve alors une équation qui, mise sous forme canonique, a déjà été vue en électricité lors de l’étude des 
régimes amortis, caractérisés par le terme d’ordre 1 : 

 

𝑥̈ +
𝜔)
𝑄
𝑥̇ + 𝜔)*𝑥 = 0 

Que l’on peut également écrire : 

𝑥̈ +
1
𝜏
𝑥̇ + 𝜔)*𝑥 = 0 

Où 𝜏, homogène à un temps est appelé temps de relaxation de l’énergie. 

On a donc :  

𝜔) = R𝑘
𝑚

 

𝜏 =
𝑚
𝛼

 

𝑄 = 𝜔)𝜏 

On rappelle que 𝑄 est appelé facteur de qualité. 

 

A VOUS DE JOUER 

Retrouver l’équation du mouvement par une approche énergétique 
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2.2. Résolution de l’équation 

On rappelle la méthode de résolution de ce type d’équation, déjà rencontrée lors des régimes amortis en électricité. 

1. Ecrire l’équation caractéristique, qui est un polynôme du second degré avec les mêmes coefficients : 
Dans notre cas :  

𝑟* +
𝜔)
𝑄
⋅ 𝑟 + 𝜔)* = 0 

2. Calculer le discriminant de l’équation caractéristique :  

Δ =
𝜔)*

𝑄*
− 4.𝜔)* = 𝜔)*(

1
𝑄*

− 4) 

3. Selon la valeur du discriminant on distingue 3 régimes possibles : 

§ Si Δ > 0, soit 𝑸 < 𝟏
𝟐
 : le régime est apériodique 

L’équation caractéristique admet deux solutions réelles 𝑟2et 𝑟*  
La solution générale de l’équation différentielle est de la forme : 
𝒙(𝒕) = 𝑨 ⋅ 𝒆𝒓𝟏𝒕 +𝑩 ⋅ 𝒆𝒓𝟐𝒕 où A et B sont des constantes à déterminer (conditions initiales) 
 

§ Si Δ = 0, soit 𝑸 = 𝟏
𝟐
 : le régime est critique 

L’équation caractéristique admet une solutions réelles 𝑟 
La solution générale de l’équation différentielle est de la forme : 
𝒙(𝒕) = (𝑨𝒕 + 𝑩) ⋅ 𝒆𝒓𝒕 où A et B sont des constantes à déterminer (conditions initiales) 
  

§ Si Δ < 0, soit 𝑸 > 𝟏
𝟐
 : le régime est pseudo-périodique 

L’équation caractéristique admet deux solutions complexes 𝑟2et 𝑟* que l’on note : 
𝑟2 = 𝑢 + 𝑖. 𝑣  et 𝑟* = 𝑢 − 𝑖. 𝑣 
La solution générale de l’équation différentielle est de la forme : 
𝒙(𝒕) = 𝒆𝒖𝒕 ⋅ (𝑨 ⋅ 𝐜𝐨𝐬 𝒗𝒕 + 𝑩 ⋅ 𝐬𝐢𝐧𝒗𝒕) où A et B sont des constantes à déterminer (conditions initiales) 

Détaillons maintenant les constantes dans les différents régimes. 

𝑸 < 𝟏
𝟐
 : régime apériodique 

Les deux solutions sont les suivantes, on peut vérifier qu’elles sont toutes les deux négatives : 

𝑟2 =
>$!% ?√A

*
  et 𝑟* =

>$!% >√A

*
  

On a donc : 
𝑞(𝑡) = 𝐴 ⋅ 𝑒B&0 + 𝐵 ⋅ 𝑒B'0 

Les constantes A et B peuvent être déduites des conditions initiales : 

f𝑥
(0) = 𝑥) = 𝐴 + 𝐵
𝑣(0) = 0 = 𝑟2𝐴 + 𝑟*𝐵

 

La résolution de ce système à deux équations et deux inconnues donne : 

g
𝐴 =

𝑥)𝑟*
𝑟* − 𝑟2

𝐵 =
𝑥)𝑟2
𝑟2 − 𝑟*

 

L’allure de l’évolution de q (et des autres grandeurs du circuit) est la suivante : 
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𝑸 = 𝟏
𝟐
 : régime critique 

La solution est la suivante :  

𝑟 = −
𝜔)
2𝑄

 

Par conséquent on a : 

𝑥(𝑡) = (𝐴𝑡 + 𝐵) ⋅ 𝑒>
4!
*C⋅0 

L’allure du régime critique est la même que celle du régime apériodique : on rappelle qu’il correspond au retour au 
repos le plus rapide. 

𝑸 > 𝟏
𝟐
 : régime pseudo-périodique 

Les racines de l’équation caractéristique sont du type :  

𝑟' = −
𝜔)
2𝑄

± 𝑖𝜔)R1 −
1
4𝑄*

 

Posons :  𝜏 = *C
4!

 et 𝜔 = 𝜔)41 −
2
EC'

 

On a alors : 𝑥(𝑡) = 𝑒>
(
) ⋅ (𝐴 ⋅ cos𝜔𝑡 + 𝐵 ⋅ sin𝜔𝑡) 
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3. Oscillation d’un pendule simple sans amortissement  
3.1. Equation du mouvement 

Une masse ponctuelle m est accrochée à l’extrémité d’un fil inextensible et sans masse de longueur l, attachée à un 
point O fixe dans le référentiel d’étude supposé galiléen. Le mouvement est repéré par l’angle orienté que fait la 
direction du fil (supposé tendu à tout instant) avec la verticale descendante. On choisit comme base d’étude la base 
polaire : 

 

A l’instant initial, la masse M est écartée de son point d’équilibre d’un angle 𝜃) puis lâchée sans vitesse initiale. Il 
s’agit cette fois de déterminer l’évolution de 𝜃 au cours du temps.  

A VOUS DE JOUER 

1. Faire le bilan des forces sur la masse. On supposera négligeable toute force de frottement. 

 

 

 

 

 

2. Appliquer le PFD et le projeter dans la base polaire. 

 

 

 

 

 

 

 

3. En déduire l’équation du mouvement. 
 
 
 
 

4. Que devient cette équation dans l’hypothèse des petits angles ? Mettre cette équation sous forme 
canonique. Dans l’hypothèse des petits angles on peut poser :  sin 𝜃 ≃ tan 𝜃 ≃ 𝜃 (à retenir !) 
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5. Retrouver cette équation à partir d’une approche énergétique. 

 

 

 

 

 

 

 

 

 

 

 

3.2. Résolution de l’équation 

A VOUS DE JOUER 

Résoudre l’équation du mouvement et déterminer 𝜃(𝑡) 
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4. Oscillation d’un pendule simple avec amortissement  
 

4.1. Equation du mouvement 

On suppose désormais l’existence de frottements de type fluides.  

A VOUS DE JOUER 

6. Faire le bilan des forces sur la masse.  

 

 

 

 

 

7. Appliquer le PFD et le projeter dans la base polaire. 

 

 

 

 

 

 

 

8. En déduire l’équation du mouvement. 
 
 
 
 

9. Que devient cette équation dans l’hypothèse des petits angles ? Mettre cette équation sous forme 
canonique. Dans l’hypothèse des petits angles on peut poser :  sin 𝜃 ≃ tan 𝜃 ≃ 𝜃 (à retenir !) 
 
 
 

 

10. Retrouver cette équation à partir d’une approche énergétique. 
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4.2. Résolution de l’équation 

A VOUS DE JOUER 

Résoudre l’équation du mouvement et déterminer 𝜃(𝑡) en indiquant les régimes possibles et leur représentation 
graphique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


