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Diffusion de par.cules 
La mécanique des fluides nous permet d’étudier les phénomènes de transport de ma7ère par convec7on : 
elle s’explique par le déplacement de par-cules de fluide, qui correspond à un déplacement à l’échelle 
macroscopique. 

Il existe cependant un autre type de transport de ma7ère : la diffusion de par7cules, qui a lieu lorsqu’il existe 
une inhomogénéité dans la densité ini7ale en par7cules. Ce déplacement de ma7ère n’est pas 
macroscopique mais purement microscopique.  

Comprendre le phénomène de diffusion de ma7ère est essen7el dans de nombreux domaines : 

- Pharmaceu7que : biodisponibilité d’un médicament ; la diffusion contrôle la libéra7on des 
substances ac7ves dans le corps. 

- Concep7on et op7misa7on de réacteurs chimiques : la diffusion influence la vitesse à laquelle les 
réac7fs se mélangent. 

- Vieillissement des peintures et revêtements de surface : la diffusion (migra7on en surface de ma7ères 
premières) peut affecter la manière dont les matériaux interagissent avec leur environnement, 
influençant la durabilité, la résistance à la corrosion et d'autres propriétés des revêtements. 

- BaPeries et piles à combus7ble : La diffusion des ions à travers les électrolytes affecte la performance 
des disposi7fs électrochimiques, impactant l'efficacité énergé7que et la durée de vie des baPeries. 

- Diffusion dopante : Dans la fabrica7on des semi-conducteurs, la diffusion est u7lisée pour introduire 
délibérément des impuretés afin de modifier les propriétés électriques des matériaux. 

1. Mise en évidence expérimentale – Grandeurs caractéris7ques 

1.1. Mise en évidence du phénomène de diffusion   

 

Il existe deux types de transports de ma7ère : la diffusion et la convec7on. 

- La diffusion est effectuée sans mouvement de ma7ère au niveau macroscopique ; elle est due à 
l’agita7on thermique et n’a lieu que s’il existe une inhomogénéité dans la densité de par7cules. 

- La convec-on est effectuée avec mouvement macroscopique de ma7ère. Ce phénomène est bien 
plus rapide que la diffusion. 

Remarque : Dans un milieu solide il ne peut y avoir transport de ma7ère que par diffusion. 
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1.2. Flux de par:cules et vecteur densité de courant 

Flux de par-cules à travers une surface 

On appelle flux de par-cules Φ, à travers une surface 𝑆, le débit de par7cules à travers cePe surface : 

Φ =
𝛿𝑁
𝑑𝑡  

Le flux est une grandeur algébrique exprimée en s!". 

Le nombre de par7cules 𝛿𝑁 traversant 𝑆 pendant une durée 𝑑𝑡 est donc : 

𝛿𝑁 = Φ	𝑑𝑡 

Vecteur densité de courant 

Considérons un ensemble de par7cules se déplaçant 
toutes à vitesse 𝑣	+++⃗ , et de densité par7culaire 𝑛. 

Cherchons le nombre de par7cules traversant l’élément 
de surface orienté 𝑑𝑆	+++⃗  situé en 𝑀 pendant une durée 𝑑𝑡. 

Ces par7cules sont contenues dans le cylindre de 
longueur 𝑣𝑑𝑡. 

  

En notant 𝜃 l’angle entre 𝑣	+++⃗  et 𝑑𝑆	+++⃗ , on déduit que le volume du cylindre vaut : 

𝑑𝜏 = 𝑣𝑑𝑡 𝑐𝑜𝑠 𝜃 × 𝑑𝑆 = 𝑣	+++⃗ . 𝑑𝑆	+++⃗ 	𝑑𝑡 

On en déduit : 

𝛿𝑁 = 𝑛𝑑𝜏 = 𝑛𝑣	+++⃗ . 𝑑𝑆	+++⃗ 	𝑑𝑡 

Le flux élémentaire vaut donc : 

𝑑𝛷 =
𝛿𝑁
𝑑𝑡 = 𝑛𝑣	+++⃗ . 𝑑𝑆	+++⃗  

Soit un ensemble de par7cules de vitesse 𝑣	+++⃗ (𝑀, 𝑡) et de densité volumique 𝑛(𝑀, 𝑡). 

Le vecteur densité de courant de ces par7cules a pour expression : 

𝚥	++⃗ (𝑀, 𝑡) = 𝑛(𝑀, 𝑡)	𝑣	+++⃗ (𝑀, 𝑡) 

Le flux de par-cules à travers une surface 𝑆, s’exprime en 𝑊, et vaut : 

Φ =
𝛿𝑁
𝑑𝑡 = < 𝚥	++⃗ . 𝑑𝑆	+++⃗

#
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2. Bilan de par7cules 

2.1. Cas à une dimension 

Considérons un système pour lequel la diffusion s’effectue selon une unique direc7on, notée (𝑂𝑥). Les 
par7cules diffusées ont donc une densité volumique notée 𝑛(𝑥, 𝑡) et un vecteur densité de courant 
𝚥	++⃗ (𝑥, 𝑡) = 𝑗(𝑥, 𝑡)	𝑢$++++⃗ . 

 

Nous allons effectuer un bilan de par7cules sur un cylindre de sec7on 𝑆 et de longueur 𝑑𝑥. 

Cas sans produc-on ou dispari-on de par-cules 

On fait le bilan de l’évolu7on du nombre de par7cules entre les instants 𝑡 et 𝑡 + 𝑑𝑡 : 

- Nombre de par7cules entrant (algébriquement) dans le cylindre en 𝑥	: 𝛿𝑁$ 

𝛿𝑁$ = Φ(𝑥)𝑑𝑡 = B< 𝑗(𝑥, 𝑡)𝑑𝑆
𝒮

C𝑑𝑡 = 𝑗(𝑥, 𝑡)𝑆𝑑𝑡 

- Nombre de par7cules sortant (algébriquement) du cylindre en 𝑥 + 𝑑𝑥 : 𝛿𝑁$&'$ 

𝛿𝑁$&'$ = 𝑗(𝑥 + 𝑑𝑥, 𝑡)𝑆𝑑𝑡 

- Bilan temporel dans le cylindre : 

𝑁(𝑥, 𝑡 + 𝑑𝑡) = 𝑁(𝑥) + 𝛿𝑁$ − 𝛿𝑁$&'$ 

que l’on peut réécrire de la manière suivante : 

𝑛(𝑥, 𝑡 + 𝑑𝑡)𝑑𝑥𝑆 − 𝑛(𝑥, 𝑡)𝑑𝑥𝑆 = 𝑗(𝑥, 𝑡)𝑆𝑑𝑡 − 𝑗(𝑥 + 𝑑𝑥, 𝑡)𝑆𝑑𝑡 

soit : 

𝜕𝑛
𝜕𝑡
(𝑥, 𝑡)𝑑𝑡𝑑𝑥𝑆 = −

𝜕𝑗
𝜕𝑥
(𝑥, 𝑡)𝑑𝑡𝑑𝑥𝑆 

qui se simplifie en : 

𝜕𝑛
𝜕𝑡
(𝑥, 𝑡) = −

𝜕𝑗
𝜕𝑥
(𝑥, 𝑡) 

ÉQUATION LOCALE DE CONSERVATION 1D SANS SOURCE 

𝜕𝑛
𝜕𝑡
(𝑥, 𝑡) +

𝜕𝑗
𝜕𝑥
(𝑥, 𝑡) = 0 
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Cas avec produc-on et dispari-on de par-cules 

Il peut y avoir une source de produc7on ou de destruc7on de par7cules (réac7on chimique, désintégra7on 
de par7cules...). 

Notons 𝜎(𝑥, 𝑡) le taux de produc7on (𝜎 > 0) ou de destruc7on (𝜎 < 0) de par7cules par unité de volume et 
de temps, aussi appelé terme source. Ainsi, le nombre de par7cules créées entre les instants 𝑡 et 𝑡 + 𝑑𝑡 dans 
le cylindre vaut : 

𝛿𝑁( = 𝜎. 𝑆𝑑𝑥. 𝑑𝑡 

Le bilan devient : 

𝜕𝑛
𝜕𝑡
(𝑥, 𝑡) = −

𝜕𝑗
𝜕𝑥
(𝑥, 𝑡) + 𝜎 

ÉQUATION LOCALE DE CONSERVATION 1D AVEC SOURCE 

𝜕𝑛
𝜕𝑡
(𝑥, 𝑡) +

𝜕𝑗
𝜕𝑥
(𝑥, 𝑡) = 𝜎 

2.2. Généralisa:on : cas 3D 

Les équa7ons précédentes peuvent être généralisées au cas à trois dimensions en appliquant le même 
raisonnement qu’en mécanique des fluides (équa7ons de conserva7on de la masse). 

ÉQUATION LOCALE DE CONSERVATION 3D  

Sans source : 

𝜕𝑛
𝜕𝑡
(𝑀, 𝑡) + 𝑑𝑖𝑣	𝚥(𝑀, 𝑡) = 0 

Avec source : 

𝜕𝑛
𝜕𝑡
(𝑀, 𝑡) + 𝑑𝑖𝑣	𝚥(𝑀, 𝑡) = 𝜎 

3. Équa7on de diffusion 

3.1. Loi de Fick 

Pour l’instant nous sommes capables de décrire le phénomène de diffusion, mais nous sommes incapables 
de déterminer 𝑛(𝑀, 𝑡) et 𝚥	++⃗ (𝑀, 𝑡) car nous manquons d’équa7ons pour déterminer les inconnues. En réalité, 
nous devons prendre en compte la cause du phénomène : il y a diffusion dès que l’inhomogénéité d’une 
grandeur physique provoque un flux de cePe grandeur propor7onnel à son gradient. C’est finalement la 
conséquence du deuxième principe de la thermodynamique. 

Vers 1855, le physiologiste allemand Adolf Fick constate expérimentalement que les molécules diffusent 
naturellement des zones de forte densité vers les zones de faible densité, de sorte à tendre vers une densité 
par7culaire uniforme dans tout le volume accessible. 

CePe constata7on le conduit à proposer une rela7on de propor7onnalité entre le vecteur densité de courant 
et le gradient de la densité par7culaire : c’est la loi de phénoménologique de Fick (une loi phénoménologique 
résulte d’une constata7on expérimentale et la décrit). 
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Loi de Fick 

Soit une espèce de densité par7culaire 𝑛(𝑀, 𝑡). Alors son vecteur densité de courant de par7cule 
s’exprime comme suit : 

𝚥	++⃗ (𝑀, 𝑡) = −𝐷	𝑔𝑟𝑎𝑑++++++++++⃗ 	𝑛(𝑀, 𝑡) 

Avec 𝐷 une constante posi7ve appelée coefficient de diffusion ou diffusivité, s’exprimant en m). s!". 

Le coefficient de diffusion dépend de la nature des par7cules diffusées, du milieu diffusant et de la 
température, mais pas de la densité par7culaire. 

 
ANen-on : comme toute loi phénoménologique, la loi de Fick a des limites ! 

Elle cesse d’être valable lorsque : 

- Le gradient de densité est trop important ; la rela7on entre le vecteur densité de courant de par7cules 
et le gradient n’est plus linéaire. 

- Le gradient de la densité varie trop vite dans le temps. La rela7on entre le vecteur densité de courant 
de par7cules et le gradient n’est plus instantanée. 

- Il existe des milieux anisotropes pour lesquels la diffusivité dépend de la direc7on de l’espace. 

3.2. Équa:on de diffusion 

Cas 1D 

A une dimension, nous avons vu que l’équa7on de conserva7on par7culaire s’écrit : 

𝜕𝑛
𝜕𝑡
(𝑥, 𝑡) +

𝜕𝑗
𝜕𝑥
(𝑥, 𝑡) = 𝜎 

La loi de Fick à une dimension s’écrit : 

𝑗(𝑥, 𝑡)	𝑢+⃗ $ = −𝐷
𝜕𝑛
𝜕𝑥
(𝑥, 𝑡)	𝑢+⃗ $ 

En remplaçant 𝑗 dans la première équa7on on ob7ent :  

𝜕𝑛
𝜕𝑡
(𝑥, 𝑡) − 𝐷

𝜕)𝑛
𝜕𝑥)

(𝑥, 𝑡) = 𝜎 

Cas général 

L’équa7on de diffusion à trois dimensions s’écrit : 

𝜕𝑛
𝜕𝑡
(𝑀, 𝑡) = 𝐷	Δ𝑛(𝑀, 𝑡) + 𝜎 

Où Δ𝑛 est le laplacien de 𝑛	: Δ𝑛 =
𝜕)𝑛
𝜕𝑥) +

𝜕)𝑛
𝜕𝑦) +

𝜕)𝑛
𝜕𝑧)  
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3.3. Longueur et temps caractéris:que de la diffusion 

À par7r de l’équa7on de diffusion sans source (𝜎 = 0), on peut obtenir le lien entre l’ordre de grandeur de 
la longueur de diffusion 𝐿 et du temps caractéris7que 𝜏 de diffusion. 

On note 𝑛∗ l’ordre de grandeur de la densité par7culaire 𝑛. 

L’équa7on de diffusion devient donc, en ordre de grandeur : 

𝑛∗

𝜏 	~	𝐷
𝑛∗

𝐿) 	⟺ 	𝐿	~	√𝐷𝜏 

Applica'on : 

On met un morceau de sucre dans une tasse de café. Supposons que l’on puisse négliger le phénomène de 
convec'on et que le sucre est uniquement diffusé dans le café. Sachant que le coefficient de diffusion du sucre 
dans l’eau est 𝐷 = 0.5	10!+	𝑚). 𝑠!" et que la tasse a un rayon 𝑅 = 3	𝑐𝑚, quel est l’ordre de grandeur du 
temps nécessaire pour que le sucre soit uniformément répar' dans le café ? Conclusion ? 

On u'lise la rela'on d’ordre de grandeur issue de l’équa'on de diffusion sans source : 

𝐿 ∼ √𝐷 𝜏 	⟺ 	𝜏 ∼
𝐿)

𝐷  

- Longueur caractéris'que de diffusion : ici, l’ordre de grandeur est le rayon de la tasse 

𝐿	~	𝑅 = 3	𝑐𝑚 = 3. 10!)	𝑚 

- Coefficient de diffusion du sucre dans l’eau : 

𝐷 = 0,5. 10!+ m) ⋅ s!". 

On es'me donc le temps caractéris'que : 

𝜏 ∼
𝐿)

𝐷 =
(3. 10!)))

0,5. 10!+ = 1,8 × 10, s. 

Si le sucre ne se répar'ssait que par diffusion, il faudrait plusieurs jours pour qu’il soit uniformément répar' 
dans une tasse de café.  

En pra'que, le mélange observé en quelques secondes est donc essen'ellement dû à la convec'on 
(mouvements du liquide, différences de température, agita'on, etc.), et non à la diffusion moléculaire seule. 
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3.4. Irréversibilité de la diffusion 

Expérimentalement, on constate que lorsqu’on dépose une gouPe d’encre dans de l’eau, la gouPe va s’étaler 
et ne reviendra jamais à sa posi7on ini7ale.  

CePe irréversibilité est visible dans l’équa7on de diffusion : celle-ci n’est pas symétrique par renversement 
du temps. 

En effet, effectuons une inversion du temps (𝑡- = −𝑡). La densité par7culaire « inversée » est notée 
𝑛-(𝑀,−𝑡) = 𝑛(𝑀, 𝑡). 

Si l’équa7on de diffusion est réversible, alors 𝑛′(𝑀,−𝑡) obéit à la même équa7on que 𝑛(𝑀, 𝑡). Or on a : 

Δ𝑛′(𝑥, −𝑡) = Δ𝑛(𝑥, 𝑡) 

𝜕𝑛′
𝜕(−𝑡) = −

𝜕𝑛
𝜕𝑡  

L’équa7on qui régirait alors 𝑛′ serait : 

𝜕𝑛′
𝜕𝑡 + 𝐷

𝜕)𝑛
𝜕𝑥) = 𝜎 

L’équa7on n’est donc pas symétrique par inversion du temps, le phénomène est irréversible. 

3.5. Résolu:on de l’équa:on de diffusion sans sources (𝜎 = 0) 

Régime permanent  

En régime permanent les solu7ons sont indépendantes du temps, l’équa7on de diffusion devient : 

Δ𝑛 = 0 

Par exemple, si on étudie un problème monodimensionnel, l’équa7on donnera : 

𝜕)𝑛
𝜕𝑥) = 0 

On en déduit que 𝑛(𝑥) = 𝐴𝑥 + 𝑏, avec 𝐴 et 𝐵 des constantes à déterminer avec les condi7ons aux limites.  

Le vecteur densité de courant s’écrit en régime permanent : 

𝚥	++⃗ (𝑥) = −𝐷
𝜕𝑛
𝜕𝑥 	𝑢$++++⃗ = −𝐷𝐴	𝑢$++++⃗  

En régime permanent, le vecteur densité de courant est à flux conserva7f : 

𝑑𝑖𝑣	𝚥	++⃗ (𝑀) = 0 

Régime quasi-sta-onnaire 

Lorsque la durée caractéris7que de varia7on de la densité par7culaire 𝑛(𝑀, 𝑡) est très grande devant la 
durée caractéris7que de diffusion, on peut négliger la dépendance en temps de 𝑛. On appelle cela 
l’approxima7on des régimes quasi-sta7onnaires. Les solu7ons seront donc iden7ques au cas du régime 
permanent. 

 


