Diffusion de particules

La mécanique des fluides nous permet d’étudier les phénomenes de transport de matiere par convection :
elle s’explique par le déplacement de particules de fluide, qui correspond a un déplacement a I'échelle
macroscopique.

Il existe cependant un autre type de transport de matiere : la diffusion de particules, qui a lieu lorsqu’il existe
une inhomogénéité dans la densité initiale en particules. Ce déplacement de matiere n’est pas
macroscopique mais purement microscopique.

Comprendre le phénomene de diffusion de matiere est essentiel dans de nombreux domaines :

Pharmaceutique : biodisponibilité d’'un médicament; la diffusion contréle la libération des
substances actives dans le corps.

Conception et optimisation de réacteurs chimiques : la diffusion influence la vitesse a laquelle les
réactifs se mélangent.

Vieillissement des peintures et revétements de surface : la diffusion (migration en surface de matiéres
premieres) peut affecter la maniere dont les matériaux interagissent avec leur environnement,
influencant la durabilité, la résistance a la corrosion et d'autres propriétés des revétements.

Batteries et piles a combustible : La diffusion des ions a travers les électrolytes affecte la performance
des dispositifs électrochimiques, impactant |'efficacité énergétique et la durée de vie des batteries.

Diffusion dopante : Dans la fabrication des semi-conducteurs, la diffusion est utilisée pour introduire
délibérément des impuretés afin de modifier les propriétés électriques des matériaux.

Mise en évidence expérimentale — Grandeurs caractéristiques

1.1. Mise en évidence du phénomene de diffusion

Il existe deux types de transports de matiere : la diffusion et la convection.

La diffusion est effectuée sans mouvement de matiére au niveau macroscopique ; elle est due a
I'agitation thermique et n’a lieu que s’il existe une inhomogénéité dans la densité de particules.

La convection est effectuée avec mouvement macroscopique de matiére. Ce phénomeéne est bien
plus rapide que la diffusion.

Remarque : Dans un milieu solide il ne peut y avoir transport de matiere que par diffusion.



1.2. Flux de particules et vecteur densité de courant
Flux de particules a travers une surface

On appelle flux de particules @, a travers une surface S, le débit de particules a travers cette surface :
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Le flux est une grandeur algébrique exprimée en s~ 1.

Le nombre de particules N traversant S pendant une durée dt est donc :

ON = d dt

Vecteur densité de courant 77N
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En notant @ I'angle entre ¥’ et dS_), on déduit que le volume du cylindre vaut :

dt = vdt cos 0 x dS = 7. dS dt
On en déduit :
SN = ndt = nv’.dS dt
Le flux élémentaire vaut donc :

ON L, =
dp =—=nv.dS
dt

Soit un ensemble de particules de vitesse v'(M, t) et de densité volumique n(M, t).

Le vecteur densité de courant de ces particules a pour expression :

JTM,t) =n(M,t) v’ (M,t)

Le flux de particules a travers une surface S, s’exprime en W, et vaut :
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2. Bilan de particules

2.1. Casaune dimension

Considérons un systeme pour lequel la diffusion s’effectue selon une unique direction, notée (Ox). Les
particules diffusées ont donc une densité volumique notée n(x, t) et un vecteur densité de courant

T t) = j(x, ) uy.
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Nous allons effectuer un bilan de particules sur un cylindre de section S et de longueur dx.

Cas sans production ou disparition de particules
On fait le bilan de I'évolution du nombre de particules entre les instants t et t + dt :

- Nombre de particules entrant (algébriquement) dans le cylindre en x : N,

6N, = d(x)dt = <ﬂ j(x, t)dS) dt = j(x,t)Sdt
S

- Nombre de particules sortant (algébriquement) du cylindre en x + dx : 6Ny 45
ONyiax = J(x + dx, t)Sdt

- Bilan temporel dans le cylindre :
N(x,t+dt) = N(x) + SNy — SNyt ax
gue l'on peut réécrire de la maniere suivante :
n(x,t + dt)dxS —n(x, t)dxS = j(x,t)Sdt — j(x + dx, t)Sdt

soit :

on aj

% (x,t)dtdxS = — I (x,t)dtdxS
qui se simplifie en :

n aj
E(x't) = —a(x't)

EQUATION LOCALE DE CONSERVATION 1D SANS SOURCE

"t + L) =0
i L T e =



Cas avec production et disparition de particules

Il peut y avoir une source de production ou de destruction de particules (réaction chimique, désintégration
de particules...).

Notons a(x,t) le taux de production (o > 0) ou de destruction (¢ < 0) de particules par unité de volume et
de temps, aussi appelé terme source. Ainsi, le nombre de particules créées entre les instants t et t + dt dans
le cylindre vaut :

SN, = 0.5dx. dt

Le bilan devient :
on 0j
—(x,t) =—=—=(x,t
5t (x,t) I (x,t)+ 0o
EQUATION LOCALE DE CONSERVATION 1D AVEC SOURCE

on aj
E(x;t) +a(th) =0

2.2.  Généralisation : cas 3D
Les équations précédentes peuvent étre généralisées au cas a trois dimensions en appliquant le méme
raisonnement qu’en mécanique des fluides (équations de conservation de la masse).
EQUATION LOCALE DE CONSERVATION 3D

Sans source :

on

E(M’ t)+divjM,t) =0
Avec source :

on
E(M' t) +divjM,t) =0

3. Equation de diffusion

3.1. Loide Fick

Pour I'instant nous sommes capables de décrire le phénomene de diffusion, mais nous sommes incapables
de déterminer n(M, t) et 7°(M, t) car nous manquons d’équations pour déterminer les inconnues. En réalité,
nous devons prendre en compte la cause du phénomene : il y a diffusion des que I'inhomogénéité d’une
grandeur physique provoque un flux de cette grandeur proportionnel a son gradient. C’est finalement la
conséquence du deuxieme principe de la thermodynamique.

Vers 1855, le physiologiste allemand Adolf Fick constate expérimentalement que les molécules diffusent
naturellement des zones de forte densité vers les zones de faible densité, de sorte a tendre vers une densité
particulaire uniforme dans tout le volume accessible.

Cette constatation le conduit a proposer une relation de proportionnalité entre le vecteur densité de courant
et le gradient de la densité particulaire : c’est la loi de phénoménologique de Fick (une loi phénoménologique
résulte d’'une constatation expérimentale et la décrit).



Loi de Fick
Soit une espéce de densité particulaire n(M, t). Alors son vecteur densité de courant de particule
s’exprime comme suit :
7M,t) = —D grad n(M, t)

Avec D une constante positive appelée coefficient de diffusion ou diffusivité, s’exprimant en m?.s™1.

Le coefficient de diffusion dépend de la nature des particules diffusées, du milieu diffusant et de la
température, mais pas de la densité particulaire.

Type de diffusion Ordre de grandeur de D
(m2.s71)
Molécules dans un gaz 10=%a 104
Molécules dans un liquide 10712 31078
Atomes dans un solide 10730 4 1016

Attention : comme toute loi phénoménologique, la loi de Fick a des limites !
Elle cesse d’étre valable lorsque :

- Legradient de densité est trop important ; la relation entre le vecteur densité de courant de particules
et le gradient n’est plus linéaire.

- Le gradient de la densité varie trop vite dans le temps. La relation entre le vecteur densité de courant
de particules et le gradient n’est plus instantanée.

- Il existe des milieux anisotropes pour lesquels la diffusivité dépend de la direction de I'espace.

3.2. Equation de diffusion
Cas 1D

A une dimension, nous avons vu que I'équation de conservation particulaire s’écrit :
0+ L
—(x, —((x,t)=0
at d0x
La loi de Fick a une dimension s’écrit :
](x' t) Uy = —Da(x, t) Uy
En remplagant j dans la premiere équation on obtient :

on et — D 2°n )
—xt)-D—(x,t)=0
ot 0x?
Cas général
L'équation de diffusion a trois dimensions s’écrit :

on
E(M' t)=DAn(M,t) + 0o

d0%n N d0°n N d0%n
dx? dy? 0z?

Ou An est le laplacienden: An =



3.3.  Longueur et temps caractéristique de la diffusion

A partir de I'équation de diffusion sans source (o = 0), on peut obtenir le lien entre 'ordre de grandeur de
la longueur de diffusion L et du temps caractéristique 7 de diffusion.

On note n* 'ordre de grandeur de la densité particulaire n.
L'équation de diffusion devient donc, en ordre de grandeur :

*

n n*

—~D—= & L~+Dt
T L?

Application :

On met un morceau de sucre dans une tasse de café. Supposons que I'on puisse négliger le phénomeéne de
convection et que le sucre est uniquement diffusé dans le café. Sachant que le coefficient de diffusion du sucre
dans l'equ est D = 0.5 1072 m2.s~1 et que la tasse a un rayon R = 3 cm, quel est l'ordre de grandeur du
temps nécessaire pour que le sucre soit uniformément réparti dans le café ? Conclusion ?

On utilise la relation d’ordre de grandeur issue de I'équation de diffusion sans source :

LZ
L~NDT & 17~—
T T D

- Longueur caractéristique de diffusion : ici, I'ordre de grandeur est le rayon de la tasse
L~R=3cm=3.10"2m
- Coefficient de diffusion du sucre dans l'eau :
D=0,510""m?-sL
On estime donc le temps caractéristique :

P10
~—=————"=18X :
DT 05100 s

Si le sucre ne se répartissait que par diffusion, il faudrait plusieurs jours pour qu’il soit uniformément réparti
dans une tasse de café.

En pratique, le mélange observé en quelques secondes est donc essentiellement di a la convection
(mouvements du liquide, différences de température, agitation, etc.), et non a la diffusion moléculaire seule.



3.4. lrréversibilité de la diffusion

Expérimentalement, on constate que lorsqu’on dépose une goutte d’encre dans de I'eau, la goutte va s’étaler
et ne reviendra jamais a sa position initiale.

Cette irréversibilité est visible dans I'’équation de diffusion : celle-ci n’est pas symétrique par renversement
du temps.

En effet, effectuons une inversion du temps (t' = —t). La densité particulaire « inversée » est notée
n'(M,—t) = n(M,t).

Si 'équation de diffusion est réversible, alors n'(M, —t) obéit a la méme équation que n(M,t).Orona:
An'(x,—t) = An(x, t)

on’ _ On
a(—t) ot

’équation qui régirait alors n’ serait :

6n’+D62n B
ot " Coaxz  °

L'équation n’est donc pas symétrique par inversion du temps, le phénomene est irréversible.
3.5. Résolution de I'équation de diffusion sans sources (g = 0)
Régime permanent
En régime permanent les solutions sont indépendantes du temps, I'équation de diffusion devient :
An=0
Par exemple, si on étudie un probleme monodimensionnel, I'équation donnera :

0%n B

0x?2

On en déduit que n(x) = Ax + b, avec A et B des constantes a déterminer avec les conditions aux limites.

Le vecteur densité de courant s’écrit en régime permanent :

JTx) = —Da u, = —DAu,

En régime permanent, le vecteur densité de courant est a flux conservatif :
divy(M) =0
Régime quasi-stationnaire

Lorsque la durée caractéristique de variation de la densité particulaire n(M, t) est tres grande devant la
durée caractéristique de diffusion, on peut négliger la dépendance en temps de n. On appelle cela
I'approximation des régimes quasi-stationnaires. Les solutions seront donc identiques au cas du régime
permanent.



