Colle sur le chapitre n°2

« Calculs algébriques »

En vrac

- 1) Vrai ou faux?
 - a) Pour $n \in \mathbb{N}$, (2n + 1)! Est impair
 - b) Pour tout $(a,b) \in \mathbb{R}^2$, $a^3 + b^3 = (a+b)(a^2 ab + b^2)$
 - c) Pour tout n,p entiers naturels non nuls, $\sum_{i=1}^{n} \sum_{k=1}^{p} k^{j} = \sum_{k=1}^{p} \sum_{j=1}^{n} k^{j}$
 - d) Pour tout n,p entiers naturels non nuls, $\frac{n}{p} \binom{n-1}{p-1} = \binom{n}{p}$
- 2) Calculer pour n entier naturel non nul, $\sum_{k=1}^{n} 2^k$
- 3) Calculer pour n entier naturel non nul, $\sum_{k=1}^{n} {n \choose k} 2^k$

Exercice n°1

Soit n∈ N, calculer:

$$A = \sum_{i=0}^{n} \sum_{j=0}^{n} (i+j)$$

$$B = \sum_{i=0}^{n} \sum_{j=0}^{n} (ij)$$

$$C = \sum_{i=0}^{n} \sum_{j=0}^{n} max(i,j)$$

Exercice n°2

- 1) Par télescopage, calculer, pour n entier naturel non nul, $S = \sum_{k=1}^{n} \frac{1}{k(k+1)}$
- 2) Calculer pour n entier naturel non nul, calculer $P = \prod_{k=1}^{n} (\frac{1}{k} \frac{1}{k+1})$

Exercice n°3

Résoudre le système suivant d'inconnue
$$(x,y,z) \in \mathbb{R}^3$$
,
$$\begin{cases} x-y+z=1\\ y+z=1\\ 2x+3y+7z=1 \end{cases}$$

Exercice n°4

- 1) Pour n entier naturel non nul, on pose $P_n = \sum_{k=0}^n {2n \choose 2k}$ et $I_n = \sum_{k=1}^n {2n \choose 2k-1}$ En considérant $P_n + I_n$ et $P_n I_n$ calculer P_n et I_n
- 2) Pour n entier naturel non nul, calculer $\sum_{k=0}^{2n} (-1)^k k^2$

Problème:

Le but de ce problème est de calculer dans la première partie $\sum_{k=1}^n k^2$, et dans la seconde partie $\sum_{k=1}^n k^3$

<u>Première partie</u>: Pour n entier naturel non nul, on définit $S_n = \sum_{k=1}^n ((k+1)^3 - k^3)$

- 1) Calculer S_n (on coupera la somme en deux, on fera un changement d'indice afin d'obtenir des sommes télescopiques)
- 2) Exprimer à présent S_n en fonction de $\sum_{k=1}^n k^2$ (on développera $(k+1)^3 k^3$)
- 3) En déduire $\sum_{k=1}^{n} k^2$

<u>Deuxième partie</u>: Pour n entier naturel non nul, on définit $T_n = \sum_{k=1}^n ((k+1)^4 - k^4)$

- 1) Calculer T_n en remarquant qu'elle est télescopique
- 2) Exprimer T_n en fonction de $\sum_{k=1}^n k^3$
- 3) En déduire $\sum_{k=1}^{n} k^3$

Première année classe préparatoire INP des Hauts-de-France, lycée Fénelon Cambrai, M. Calciano