Lorsqu'on a une fonction f, donnée avec une formule f(x), on vous demandera régulièrement de calculer sa *dérivée*. La dérivée de cette fonction permet en général de répondre à plusieurs questions :

- Quel est le lien entre la valeur d'une dérivée et la tangente à une courbe?
- est-ce que les valeurs prises par le nombre f(x) "augmentent" ou "diminuent" quand x augmente?
- est-ce que la fonction f admet un maximum ou un minimum?

1 Lien avec la tangente

Méthode 1.1 : Déterminer un nombre dérivé graphiquement

Le nombre dérivé d'une fonction en un point est le coefficient directeur de la tangente à la courbe de la fonction en ce point.

On va avoir besoin de la proposition suivante :

Proposition 1.1 (Coefficient directeur d'une droite) — Si une droite passe par deux points $A(x_A; y_A)$ et $B(x_B; y_B)$ (où $x_A \neq x_B$) alors son coefficient directeur m est :

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{\Delta y}{\Delta x}.$$

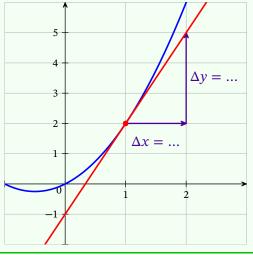
Exemple 1 Soit la fonction f définie sur \mathbf{R} par $f(x) = x^2 + x$ et sa courbe ci-dessous (en bleu), ainsi que la tangente à la courbe au point d'abscisse 1 (en rouge).

Au point d'abscisse 1 :

$$\frac{\Delta y}{\Delta x} = \frac{\dots}{\dots} = \dots$$

C'est le **coefficient directeur de la tangente** au point d'abscisse **1**.

Donc f'(1) =



Retrouvons ce résultat par le calcul:

- $f(x) = x^2 + x$ donc:
- f'(x) =
- f'(1) =

On peut aussi avoir besoin de l'équation de la tangente :

Proposition 1.2 (Équation de la tangente) — Si f est une fonction dérivable en a, alors f admet une tangente en a d'équation :

$$y = f'(a)(x - a) + f(a).$$

En particulier, le coefficient directeur de cette tangente est f'(a).

Dans notre exemple, on a:

- f(1) =
- f'(1) =
- donc l'équation de la tangente au point d'abscisse 1 est : y =

Terminale STMG - 2025/2026 1

2 Quelques formules

En filière STMG, on vous demande de connaître des formules permettant de calculer une dérivée. Je rappelle les principales formules pour dériver une expression ici :

Remarque 1 k est un nombre qui ne dépend pas de x (on dit que c'est une constante) et n est un entier naturel.

f(x) =	k	x	x^2	x^3	x^n
f'(x) =					

Parfois, une expression est constituée de sommes, de produits ou de quotient, on a alors :

Remarque 2 u et v sont ici des fonctions.

fonction f	k×u	u + v	$u \times v$	$\frac{u}{v}$
dérivée f'				

♦ **DER.1** Compléter le tableau suivant :

f(x) =	10	-7	x	10x	-30 <i>x</i>	x^2	$3x^2$	$-5x^2$	9x + 3	$4x^2 + 3x$	$9x^2 - 5x + 7$
f'(x) =											

♦ DER.2 Donner l'expression des dérivées des fonctions définies par :

a) <i>f</i>	(x) =	$x^2 + 12$	2										
--------------------	-------	------------	---	--	--	--	--	--	--	--	--	--	--

b)
$$f(x) = 20(x^2 + 12)$$
.....

c)
$$f(x) = x^4 + 10x$$

d)
$$f(x) = 17(x^4 + 10x)$$

e)
$$u(x) = x^2 + 15x$$
 et $v(x) = 9x + 12$

.....

f) $f(x) = (x^2 + 15x)(9x + 12)$

.....

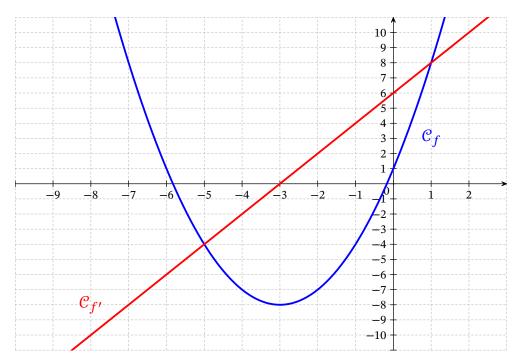
.....

g)
$$f(x) = (x^3 - 2)(x^2 + 10x)$$

.....

3 Lien entre le signe de f'(x) et les variations de f

Ci-dessous est tracée la courbe représentative de la fonction f définie par $f(x) = x^2 + 6x + 1$ et de sa dérivée définie par $f'(x) = \dots$



1) Compléter le tableau de signe de f'(x).

х	-∞	+∞
Signe de $f'(x)$		

2) Compléter les variations de la fonction f.

x	-∞ +∞
Variations de f	

Le lien mis en évidence est vrai pour toutes les fonctions dérivables : on a :

Théorème 1.3 — Si f est une fonction dérivable et f'(x) l'expression de sa fonction dérivée alors :

- Si sur un intervalle, $f'(x) \ge 0$ alors, sur cet intervalle, f est
- **DER.3** On considère la fonction f définie par $f(x) = 2x^3 + 9x^2 60x + 1$
 - 1) Calculer l'expression de f'(x).

.....

2) Montrer que f'(x) peut s'écrire (3x - 6)(2x + 10).

.....

Lycée Ella Fitzgerald – 2025/2026

3)	Dresser	le	tableau	de	signe	de	f'((x)	:
----	---------	----	---------	----	-------	----	-----	-----	---

Calculs nécessaires :	 	 	 	 • • •	• • •	 	 	 • • •	 	 	 	 	٠.

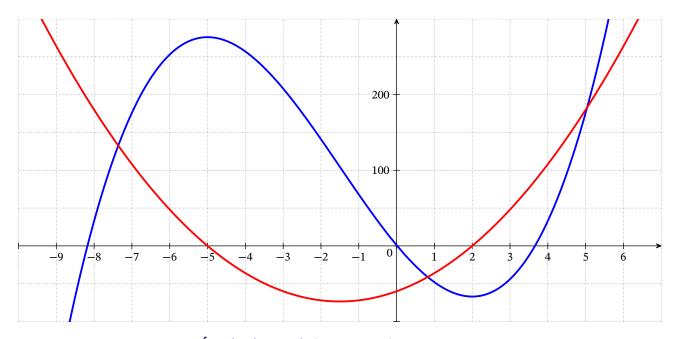
.....

x	<u>-∞</u> +∞
Signe de	
Signe de	
Signe de $f'(x)$	

4) En déduire le tableau de variations de f:

x	$-\infty$	+∞
Variations de f		

5) Laquelle des deux courbes ci-dessous est celle de f et laquelle est celle de f'?



4 Étude de produits et quotients

♦ **DER.4** On considère la fonction définie par f(x) = (-3x - 1)(3x + 11).

1) Déterminer les fonctions u et v telles que $f = u \times v$.

......

4

) En de	eduire $f'(x)$.	
) Dress	er alors le tableau de variations de	f:
•		
	x	<u>−∞</u> +∞
	Signe de $f'(x) = \dots$	
	Variations de f	
ER.5	On considère la fonction définie pa	$r f(x) = \frac{5x+2}{3x+12}$.
		3x + 12
Dátai	miner les fonctions u et u telles que	$af - \frac{u}{c}$
Déter	rminer les fonctions u et v telles que	$e f = \frac{u}{v}.$
	miner les fonctions u et v telles que u telles que u telles $u'(x)$ et $v'(x)$.	$ef = \frac{u}{v}.$
Calcu		
Calcu	aler $u'(x)$ et $v'(x)$.	
Calcu	tler $u'(x)$ et $v'(x)$.	
Calcu	tler $u'(x)$ et $v'(x)$. Eduire $f'(x)$.	
Calcu	tler $u'(x)$ et $v'(x)$.	
Calcu	tler $u'(x)$ et $v'(x)$. Eduire $f'(x)$.	
Calcu	tler $u'(x)$ et $v'(x)$. Eduire $f'(x)$. For alors le tableau de variations de	f:
Calcu	ther $u'(x)$ et $v'(x)$. Eduire $f'(x)$. For alors le tableau de variations de x	f:
Calcu	ther $u'(x)$ et $v'(x)$. Eduire $f'(x)$. For alors le tableau de variations de x Signe de	f: