™ Correction exercice 1:

1) Le tableau suivant donne les restes modulo 7.

Reste de
$$n \mod 7$$
 0 1 2 3 4 5 6
Reste de $n^2 \mod 7$ 0 1 4 2 2 4 1

Ainsi, les restes possibles pour le carré d'un entier modulo 7 sont 0, 1, 2 et 4.

2) Soient x et y deux entiers. Le tableau suivant donne les restes possibles de $x^2 + y^2$ modulo 7:

$x^2 \backslash y^2$	0			4
0	0	1	2	4
1	1	2	3	5
2	2	3	4	6
4	4	5	6	1

Supposons que (x,y) est solution de $x^2 + y^2 = 7^{2019}$. Alors $x^2 + y^2 \equiv 0 \pmod{7}$ (car 7 divise 7^{2019}). D'après le tableau ci-dessus, cela implique $x^2 \equiv 0 \pmod{7}$ et $y^2 \equiv 0 \pmod{7}$. On déduit donc que $x \equiv 0 \pmod{7}$ et $y \equiv 0 \pmod{7}$, c'est-à-dire 7 divise x et y.

Correction exercice 2:

- 1) On remarque $3^4 = 81 = 1 + 5 \times 16 \equiv 1 \pmod{5}$ donc $(3^4)^n \equiv 1^n \pmod{5}$, i.e. $3^{4n} \equiv 1 \pmod{5}$. De même, $4^2 = 16 = 1 + 5 \times 3 \equiv 1 \pmod{5}$ donc $(4^2)^n \equiv 1^n \pmod{5}$, i.e. $4^{2n} \equiv 1 \pmod{5}$.
- 2) On en déduit que

$$A_n = 3^{4n+3} + 4^{2n+1} = 3^3 \times 3^{4n} + 4 \times 4^{2n} \equiv 27 \times 1 + 4 \times 1 \equiv 31 \equiv 1 \pmod{5}.$$

Ainsi, $A_n - 1 \equiv 0 \pmod{5}$, i.e. 5 divise $A_n - 1$.

- 3) Comme $3 \equiv 1 \pmod{2}$, on a $3^{4n+3} \equiv 1^{4n+3} \equiv 1 \pmod{2}$, et comme $4 \equiv 0 \pmod{2}$ et 2n+1>0, $4^{2n+1} \equiv 0 \pmod{2}$. Ainsi $A_n \equiv 1 \pmod{2}$, donc $A_n-1 \equiv 0 \pmod{2}$: A_n-1 est pair.
- 4) Comme 5 divise $A_n 1$, le chiffre des unités de $A_n 1$ est 0 ou 5. Mais comme $A_n 1$ est pair, ce chiffre est pair, donc le chiffre des unités de $A_n 1$ est 0. Ainsi, le chiffre des unités de A_n est 1.

Correction exercice 3:

- 1) Si $n_0 = 10$, alors $n_0^2 = 100$ et l'écriture décimale de n_0^2 se termine par 00.
- **2) a)** Comme $100 + b \equiv b \pmod{100}$, on a $(100 + b)^2 \equiv b^2 \pmod{100}$.
 - **b)** En prenant successivement b = 1, b = 2 et b = 3, on obtient :
 - $101^2 \equiv 1 \pmod{100}$, donc 101^2 se termine par 01 et $n_1 = 101$ convient;
 - $102^2 \equiv 4 \pmod{100}$, donc 102^2 se termine par 04 et $n_4 = 102$ convient;
 - $103^2 \equiv 9 \pmod{100}$, donc 103^2 se termine par 09 et $n_9 = 103$ convient.
- 3) a)

b) Comme $n \equiv 10d + u \pmod{100}$ et u = 5, on a $n \equiv 10d + 5 \pmod{100}$. Ainsi:

$$n^2 \equiv (10d + 5)^2 \equiv 100d^2 + 100d + 25 \equiv 25 \pmod{100},$$

donc n^2 se termine par 25.

c) Si n^2 se termine par 06, alors a=6 donc, d'après le tableau, u=4 ou u=6. Ainsi u est pair, donc il existe $k\in \mathbb{N}$ tel que u=2k. On a alors :

$$n^2 \equiv (10d + 2k)^2 \equiv 100d^2 + 40dk + 4k^2 \equiv 40dk + 4k^2 \pmod{100}$$
.

Or $n^2 \equiv 6 \pmod{100}$, donc $40dk + 4k^2 \equiv 6 \pmod{100}$.

Comme 4 divise 100, on en déduit $40dk + 4k^2 \equiv 6 \pmod{4}$, et donc $0 \equiv 6 \pmod{4}$, ce qui est absurde.

4) D'après la question 3.a., si le carré d'un entier se termine par 0a alors a ∈ {0,1,4,5,6,9}. Les questions 1. et 2. assurent qu'il existe des entiers n_a > 10 tels que n_a² se termine par 0a si a ∈ {0,1,4,9}, et la question 3.c. montre que ce n'est pas le cas si a = 6. Si n² se termine par 5, alors d'après 3.a., le chiffre des unités de n est aussi 5; et d'après 3.b., n² se termine par 25. Ainsi, il n'existe pas de n tel que n² se termine par 05.

On conclut qu'il existe un entier $n_a > 10$ tel que n_a^2 se termine par 0a si et seulement si $a \in \{0,1,4,9\}$.

Maths Expertes - 2025/2026 1