Maths Expertes DS 2 10 octobre 2025 Maths Expertes DS 2 10 octobre 2025

- ♦ **DS 2.1** (4 points)
 - 1) Soit $n \in \mathbb{Z}$. En utilisant un tableau, déterminer les restes possibles de n^2 modulo 7.
 - 2) En utilisant un tableau à double entrée, montrer que si $(x,y) \in \mathbb{Z}^2$ est une solution de l'équation $x^2 + y^2 = 7^{2019}$ alors 7 divise x et 7 divise y.
- ♦ **DS 2.2** (**6 points**) Soit $n \in \mathbb{N}$. On pose $A_n = 3^{4n+3} + 4^{2n+1}$.
 - 1) Démontrer que $3^{4n} \equiv 1 \pmod{5}$ et que $4^{2n} \equiv 1 \pmod{5}$.
 - 2) En déduire que 5 divise $A_n 1$.
 - 3) Justifier que $A_n 1$ est pair.
 - 4) Déduire des questions précédentes le chiffre des unités de A_n .
- ♦ DS 2.3 (8 points) Dans cet exercice, on souhaite déterminer les entiers a compris entre 0 et 9 tels qu'il existe un entier naturel $n_a > 10$ tel que les deux derniers chiffres dans l'écriture décimale de n_a^2 soient 0 et a. Dans ce cas, on dira que n_a^2 se termine par $\overline{0a}$.
 - 1) Déterminer un entier $n_0 > 10$ tel que l'écriture décimale de n_0^2 se termine par $\overline{00}$.
 - **2) a)** Soit $b \in \mathbb{Z}$. Justifier que $(100 + b)^2 \equiv b^2 \pmod{100}$.
 - **b)** En déduire un entier $n_1 > 10$ tel que n_1^2 se termine par $\overline{01}$, un entier $n_4 > 10$ tel que n_4^2 se termine par $\overline{04}$ et un entier $n_9 > 10$ tel que n_9^2 se termine par $\overline{09}$.
 - 3) Soit n un entier supérieur ou égal à 10. On note d le chiffre des dizaines de n et u le chiffre des unités de n.
 - a) On note a le chiffre des unités de n^2 . Compléter directement sur l'énoncé le tableau suivant :

и	0	1	2	3	4	5	6	7	8	9
а										

Pour les questions suivantes, on pensera au fait que $n \equiv 10d + u \pmod{100}$.

- **b)** On suppose que u = 5. Montrer que n^2 se termine par $\overline{25}$.
- c) On suppose que n^2 se termine par $\overline{06}$. Montrer qu'il existe un entier k tel que $40dk + 4k^2 \equiv 6 \pmod{100}$ et aboutir à une absurdité.
- 4) Conclure.

DS 2.1 (4 points)

- 1) Soit $n \in \mathbb{Z}$. En utilisant un tableau, déterminer les restes possibles de n^2 modulo 7.
- 2) En utilisant un tableau à double entrée, montrer que si $(x,y) \in \mathbb{Z}^2$ est une solution de l'équation $x^2 + y^2 = 7^{2019}$ alors 7 divise x et 7 divise y.
- ♦ **DS 2.2** (**6 points**) Soit $n \in \mathbb{N}$. On pose $A_n = 3^{4n+3} + 4^{2n+1}$.
 - 1) Démontrer que $3^{4n} \equiv 1 \pmod{5}$ et que $4^{2n} \equiv 1 \pmod{5}$.
 - 2) En déduire que 5 divise $A_n 1$.
 - 3) Justifier que $A_n 1$ est pair.
 - 4) Déduire des questions précédentes le chiffre des unités de A_n .
- ♦ DS 2.3 (8 points) Dans cet exercice, on souhaite déterminer les entiers a compris entre 0 et 9 tels qu'il existe un entier naturel $n_a > 10$ tel que les deux derniers chiffres dans l'écriture décimale de n_a^2 soient 0 et a. Dans ce cas, on dira que n_a^2 se termine par $\overline{0a}$.
 - 1) Déterminer un entier $n_0 > 10$ tel que l'écriture décimale de n_0^2 se termine par $\overline{00}$.
 - **2) a)** Soit $b \in \mathbb{Z}$. Justifier que $(100 + b)^2 \equiv b^2 \pmod{100}$.
 - **b)** En déduire un entier $n_1 > 10$ tel que n_1^2 se termine par $\overline{01}$, un entier $n_4 > 10$ tel que n_4^2 se termine par $\overline{04}$ et un entier $n_9 > 10$ tel que n_9^2 se termine par $\overline{09}$.
 - 3) Soit n un entier supérieur ou égal à 10. On note d le chiffre des dizaines de n et u le chiffre des unités de n.
 - a) On note a le chiffre des unités de n^2 . Compléter directement sur l'énoncé le tableau suivant :

и	0	1	2	3	4	5	6	7	8	9
а										

Pour les questions suivantes, on pensera au fait que $n \equiv 10d + u \pmod{100}$.

- **b)** On suppose que u = 5. Montrer que n^2 se termine par $\overline{25}$.
- c) On suppose que n^2 se termine par $\overline{06}$. Montrer qu'il existe un entier k tel que $40dk + 4k^2 \equiv 6 \pmod{100}$ et aboutir à une absurdité.
- 4) Conclure.

1