3 Géométrie vectorielle - 1

Ce qui est affirmé sans démonstration peut être réfuté sans démonstration.

Euclide (vers 300 av J. -C.).

C'est aussi un autre sujet, auquel je pense par moments depuis près de 40 ans, à savoir les premiers fondements de la géométrie; je ne sais pas si je vous ai déjà parlé de mes vues à ce sujet. Je n'ai pas encore consolidé certaines choses, mais ma conviction que nous ne pouvons pas démontrer entièrement la géométrie de manière a priori est devenue de plus en plus ferme. Entre-temps, je n'ai probablement plus assez de temps pour tout cela, pour retravailler mes recherches inachevées en vue d'une publication publique, et cela ne se produira peut-être même pas de mon vivant, car je redoute le « cri des béotiens » si jamais j'exprimais mon opinion.

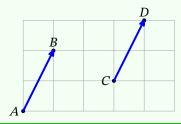
Carl Friedrich Gauss (1777-1855), dans une lettre à Bessel, le 27 juin 1829.

I Vecteurs

3.1.1 Définition

Définition 1 (Vecteur) — Au lycée, on définira un vecteur comme l'élément associé à une translation. Le vecteur \overrightarrow{AB} est l'élément associé à la translation qui envoie A sur B. Deux vecteurs sont donc **égaux** s'ils sont associés à la même translation.

™ Exemple 1



Remarque 1 Un vecteur peut aussi être représenté par une seule lettre (*une* translation), par exemple \vec{u} .

Définition 2 (Vecteur) — Un vecteur \vec{u} du plan peut être déterminé par :

- sa direction;
- son sens:
- sa **norme** (qui correspond à sa longueur), et qui se note avec deux barres de chaque côté : $\|\vec{u}\|$.

Proposition 3.1 (Égalité entre deux vecteurs) — Soient A, B, C, D quatre points du plan. On a :

 $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si ABDC est un parallélogramme.

Remarque 2 S'il existe deux points A et B tels que $\vec{u} = \overrightarrow{AB}$, alors :

- la **direction** de \vec{u} est la droite (AB);
- le **sens** de \vec{u} est de A vers B;
- la **norme** de \vec{u} est la longueur $AB : ||\vec{u}|| = ||\overrightarrow{AB}|| = AB$.

Proposition 3.2 (Égalité entre vecteurs) — Deux vecteurs sont égaux s'ils ont **même direction**, **même sens**, et **même norme**.

Seconde - 2025/2026 1

Proposition 3.3 (Égalité entre vecteurs, admis) — Soient A, B, C, D quatre points du plan. Les trois propositions suivantes sont équivalentes :

- $\overrightarrow{AB} = \overrightarrow{CD}$;
- ABDC est un parallélogramme;
- D est l'image de C par la translation de vecteur \overrightarrow{AB} .

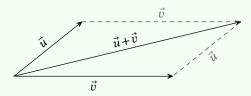
Remarque 3 « Propositions équivalentes » signifie que si l'une des propositions est vraie, alors elles sont toutes vraies.

3.1.2 Somme de vecteurs

Proposition 3.4 — L'enchaînement (on dit aussi **la composition**) de deux translations est une translation.

Définition 3 (Somme de vecteurs) — La somme de deux vecteurs \vec{u} et \vec{v} est le vecteur associé à l'enchaînement (on dit aussi la **composition**) des translations associées à \vec{u} et \vec{v} .

Exemple 2 (Somme de vecteurs)



Proposition 3.5 (Commutativité) — Pour tous vecteurs \vec{u} et \vec{v} , on a:

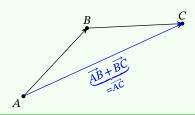
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}.$$

3.1.3 Relation de Chasles

Proposition 3.6 (Relation de Chasles) — Pour tous points A, B et C du plan, on a :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
.

Exemple 3 (Relation de Chasles)



3.1.4 Vecteurs opposés

Définition 4 (Vecteurs opposés) — On appelle **vecteur nul** le vecteur de norme nulle. On le note $\vec{0}$, c'est aussi le vecteur associé à la translation qui laisse fixe chaque point. Deux vecteurs sont dits **opposés** si leur somme est le vecteur nul, c'est-à-dire :

 \vec{u} et \vec{v} sont **opposés** $\Leftrightarrow \vec{v} + \vec{u} = \vec{0}$.

On peut noter alors $\vec{u} = -\vec{v}$ et de même $\vec{v} = -\vec{u}$.

Exemple 4

Proposition 3.7 (admis) — Deux vecteurs sont opposés s'ils ont :

- même direction;
- même norme;
- · des sens différents.

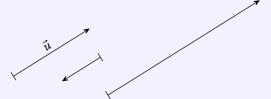
Proposition 3.8 (admis) — Pour tous points A et B du plan, on a :

$$-\overrightarrow{AB} = \overrightarrow{BA}$$
.

3.1.5 Produit d'un vecteur par un réel

Définition 5 (Produit d'un vecteur par un réel) — Si \vec{u} est un vecteur et λ un réel, alors le vecteur $\lambda \vec{u}$ est le vecteur qui a :

- même direction que \vec{u} ;
- même sens que \vec{u} si $\lambda \ge 0$, sens opposé à \vec{u} si $\lambda \le 0$;
- une norme égale à $\lambda \times \|\vec{u}\| \sin \lambda$ est positif, $-\lambda \times \|\vec{u}\| \sin \alpha$.



Proposition 3.9 (Distributivité, admis) — Pour tous vecteurs \vec{u} et \vec{v} , et pour tout réel λ , on a :

- $\lambda(\vec{u} + \vec{v}) = \lambda \vec{u} + \lambda \vec{v}$;
- $\lambda \vec{0} = \vec{0}$ et $0\vec{u} = \vec{0}$.

II Repères vectoriels et coordonnées

3.2.1 Repères

Définition 6 (Repère du plan) — Soient O un point du plan et \vec{i} et \vec{j} deux vecteurs non colinéaires (i.e de direction différentes). Alors (O, \vec{i}, \vec{j}) est appelé un **repère** du plan.

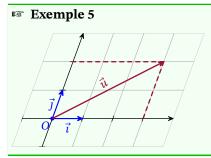
- O est appelé l'origine du repère;
- (\vec{l}, \vec{j}) est appelé une **base** du plan.

3.2.2 Coordonnées

Proposition 3.10 (Coordonnées dans un repère donné, admise) — $Si(O, \vec{i}, \vec{j})$ est un repère du plan, alors pour tout vecteur \vec{u} du plan, il existe un unique couple de réels (x,y) tel que :

$$\vec{u} = x\vec{i} + y\vec{j}$$
.

On note $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$, x et y sont appelées les **coordonnées** de \vec{u} dans ce repère.



III Coordonnées et opérations

3.3.1 Somme de vecteurs, produit par un réel

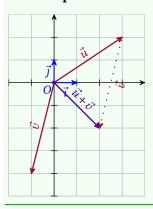
Proposition 3.11 (Coordonnées et opérations, admise) — Soit $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$, $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs et k un nombre réel.

Alors:

$$\vec{u} + \vec{v} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$$

$$k\vec{u} = \begin{pmatrix} kx \\ ky \end{pmatrix}.$$

Exemple 6



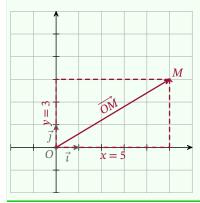
3.3.2 Cordonnées d'un point

Définition 7 — Soit (O, \vec{i}, \vec{j}) un repère du plan. Tout point M du plan peut être défini de manière unique par deux nombres x et y tels que :

$$\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j}$$

- *x* est appelé l'abscisse du point *M*;
- y est appelé l'ordonnée du point M.

On note les coordonnées des points en **ligne** : M(x,y).

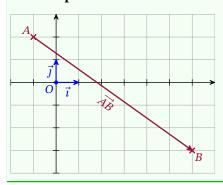


3.3.3 Coordonnées d'un vecteur et extrémités

Proposition 3.12 (Coordonnées d'un vecteur en fonction de ses extrémités, admise) — Dans un repère, si on considère deux points $A(x_A; y_A)$ et $B(x_B; y_B)$, alors le vecteur \overrightarrow{AB} a pour coordonnées :

$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}.$$

Exemple 8



3.3.4 Repères particuliers

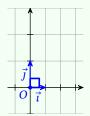
Définition 8 (Orthogonalité) — Deux vecteurs sont dits orthogonaux si ils forment un angle droit.

Définition 9 (Repère du plan) — Soit (O, \vec{i}, \vec{j}) un repère du plan.

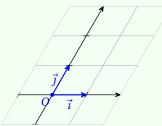
- Si les directions de \vec{i} et \vec{j} sont orthogonales, on dit que le repère est **orthogonal**;
- si les normes de \vec{i} et \vec{j} sont égales à 1, le repère est dit **normé**;
- Si les directions de \vec{i} et \vec{j} sont orthogonales et que les normes de \vec{i} et \vec{j} sont égales à 1, on dit que le repère est **orthonormé**.

Exemple 9

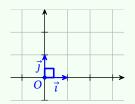
Repère orthogonal



Repère normé



Repère orthonormé



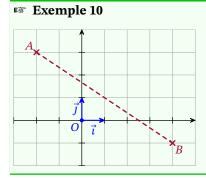
3.3.5 Norme d'un vecteur

Proposition 3.13 (Norme d'un vecteur) — On considère un repère **orthonormé** du plan (c'est-à-dire que \vec{i} et \vec{j} sont deux vecteurs de **norme 1** et **orthogonaux**, ils forment un angle droit).

Si dans ce repère, on a
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
, alors $\|\vec{u}\| = \sqrt{x^2 + y^2}$.

Proposition 3.14 — Pour un vecteur \overrightarrow{AB} , on a:

$$\|\overrightarrow{AB}\| = AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}.$$



IV Exercices

♦ VEC.1 Chacune des figures ci-dessous peut être obtenue à partir d'une seule autre par un glissement selon deux directions à choisir parmi Nord, Sud, Est et Ouest. Compléter le tableau à l'aide des figures :

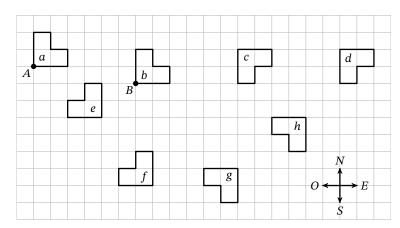
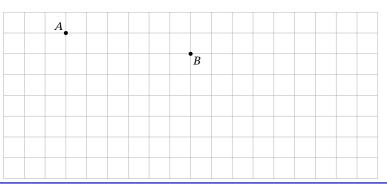


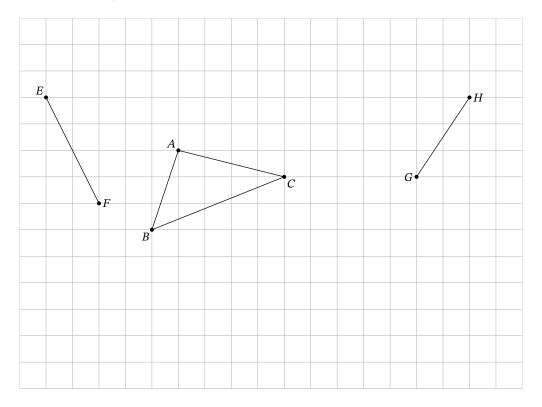
Figure	Figure obtenue par glissement	Déplacement
а		(6E;1S)
b		
С		
d		
е		
f		
g		
h		

- ♦ VEC.2 On considère la figure ci-dessous :
 - 1) Placer l'image A' de A obtenue en déplaçant A de 2 carreaux vers la droite, puis de 5 carreaux vers le bas, puis faire subir à B les mêmes déplacements. On notera B' le point obtenu.
 - **2)** Tracer le quadrilatère AA'B'B. Que peut-on dire de ce quadrilatère? Que dire de ses diagonales [A'B] et [AB']?



Définition 1 — On dit que A' est associé à A et que B' est associé à B par une même translation. On dit aussi que A' est l'image de A par cette translation.

♦ VEC.3 On considère la figure ci-dessous :



- 1) On désigne par t la translation transformant E en F.
 - a) Placer les points A', B' et C' images respectives des points A, B et C par la translation t.
 - **b)** Tracer une flèche rouge allant de *E* vers *F*. Faire de même pour *A* et *A'*, *B* et *B'* puis *C* et *C'*.

Définition 2 — Les quatre « segments fléchés » ainsi définis correspondent aux mêmes déplacements. On dit qu'ils représentent le même **vecteur** et on écrit :

$$\overrightarrow{EF} = \overrightarrow{AA'} = \overrightarrow{BB'} = \overrightarrow{CC'}$$
.

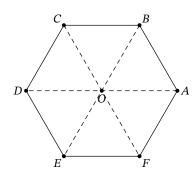
 \overrightarrow{EF} , $\overrightarrow{AA'}$, $\overrightarrow{BB'}$, $\overrightarrow{CC'}$ sont appelés **représentants** d'un même vecteur.

Le point de départ de chacun des vecteurs est appelé **origine** et le point d'arrivée est appelé **extrémité** du vecteur.

2) Placer sur la figure deux représentants du vecteur \overrightarrow{AB} : l'un est d'origine A' et l'autre d'extrémité C.

Premières notions

♦ VEC.4 On considère l'hexagone régulier ci-dessous :



- 1) Déterminer le plus possible de vecteurs égaux formés avec les points de la figure.
- 2) Les égalités suivantes sont-elles vraies?

a) $\overrightarrow{DC} = \overrightarrow{OB}$;

DC = OB;

(DC) = (OB).

b) $\overrightarrow{AF} = \overrightarrow{FE}$;

AF = FE;

(AF) = (FE).

c) $\overrightarrow{OA} = \overrightarrow{OD}$;

OA = OD;

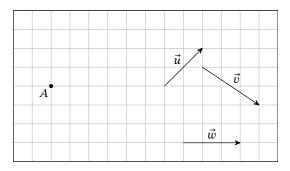
(OA) = (OD).

d) $\overrightarrow{EB} = \overrightarrow{EO}$;

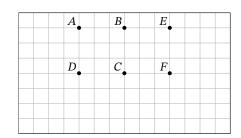
EB = EO;

(EB) = (EO).

- ♦ VEC.5 Soient ABCD et ABEF deux parallélogrammes.
- 1) Donner tous les vecteurs égaux au vecteur \overrightarrow{AB} .
- 2) Démontrer que *CDFE* est un parallélogramme.
- ♦ **VEC.6** Soit *MAK* un triangle équilatéral.
- 1) a) Construire le point *N*, image de *K* par la translation de vecteur \overrightarrow{AM} .
 - **b)** Quelle est la nature du quadrilatère *AMNK*? Justi-
- 2) a) Construire le point S, symétrique de M par rapport
 - **b)** Construire le point *O* tel que *K* soit le milieu de
 - c) Démontrer que $\overrightarrow{AM} = \overrightarrow{SO}$.
- ♦ VEC.7 Construire un représentant d'origine *A* pour chacun des vecteurs \vec{u} , \vec{v} et \vec{w} :



VEC.8 On considère la figure ci-dessous :



- 1) Indiquer deux vecteurs égaux à \overrightarrow{AB} puis un vecteur égal à \overrightarrow{AC} .
- **2)** Construire les points M, N, P et Q tels que :

 $\overrightarrow{AM} = \overrightarrow{BD}$

 $\overrightarrow{BN} = \overrightarrow{AF}$

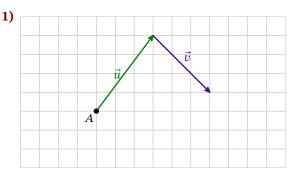
 $\overrightarrow{CP} = \overrightarrow{ED}$

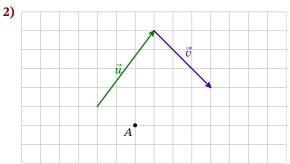
 $\overrightarrow{FO} = \overrightarrow{EC}$.

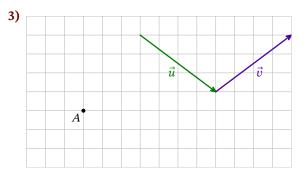
- 3) Quelle est l'image de A par la translation de vecteur \overrightarrow{DC} ? de vecteur \overrightarrow{BF} ?
- **4)** Quelle est l'image de *C* par la translation de vecteur \overrightarrow{EA} ? de vecteur \overrightarrow{CD} ?

Sommes

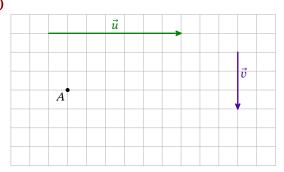
♦ VEC.9 Dans chacun des cas ci-dessous, construire le vecteur d'origine A égal à la somme $\vec{u} + \vec{v}$.



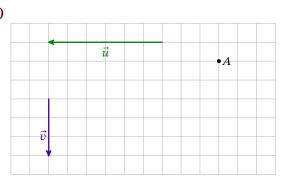




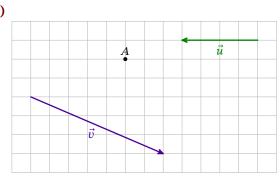
4)



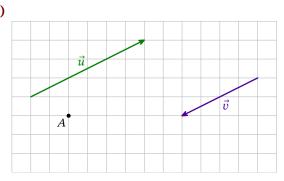
5)



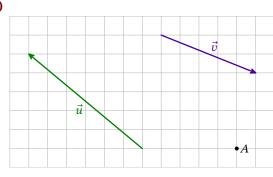
6)



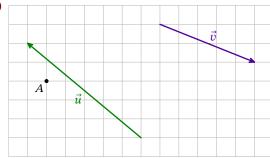
7)



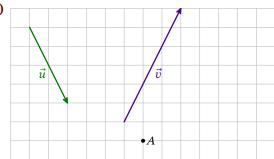
8)



9)



10)



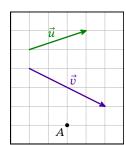
♦ **VEC.10** Dans la figure de l'exercice 4, on pose $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$.

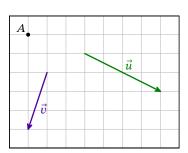
Exprimer, en utilisant uniquement les vecteurs \vec{u} et \vec{v} , les vecteurs suivants :

$$\overrightarrow{AO}$$
; \overrightarrow{AB} ; \overrightarrow{EA} ; \overrightarrow{OF} ; \overrightarrow{ED} ; \overrightarrow{DF} .

Relation de Chasles, calculs

♦ VEC.11 Dans chacun des cas, reproduire la figure et construire le vecteur d'origine A égal à $3\vec{u} + 2\vec{v}$.





♦ VEC.12 Écrire le plus simplement possible :

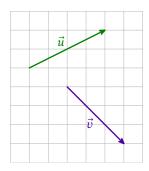
$$\begin{split} \vec{u} &= \overrightarrow{DA} - \overrightarrow{DB}; \quad \vec{v} = \overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC}; \\ \vec{w} &= \overrightarrow{AB} - \overrightarrow{AC} + \overrightarrow{DC} - \overrightarrow{DB}; \\ \vec{x} &= \overrightarrow{AB} - \overrightarrow{CD} - \overrightarrow{AC} + \overrightarrow{BA}; \\ \vec{y} &= \overrightarrow{CD} + \overrightarrow{AB} + \overrightarrow{EF} - \overrightarrow{AB} - \overrightarrow{ED}. \end{split}$$

♦ **VEC.13** A, B, C et D sont quatre points du plan. Démontrer que :

1)
$$\overrightarrow{AB} - \overrightarrow{CD} - (\overrightarrow{AB} - \overrightarrow{CA}) = \overrightarrow{DA}$$

2)
$$\overrightarrow{AD} + \overrightarrow{BC} = \overrightarrow{AC} + \overrightarrow{BD}$$

- ♦ **VEC.14** *O* et *A* sont deux points distincts.
- 1) Placer les points M, N et P tels que : $\overrightarrow{OM} = 2\overrightarrow{OA}$; $\overrightarrow{ON} = -3.5\overrightarrow{OA}$; $\overrightarrow{OP} = -7\overrightarrow{OA}$.
- 2) a) Exprimer le vecteur $\overrightarrow{OM} + \overrightarrow{ON}$ en fonction de \overrightarrow{OA} .
 - **b)** Exprimer le vecteur \overrightarrow{OP} en fonction de \overrightarrow{ON} .
- ♦ VEC.15 On dispose de la figure ci-dessous :



- 1) Reproduire cette figure et placer un point *A*.
- 2) Placer les points B et C tels que $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{AC} = \overrightarrow{v}$.
- 3) Placer le point *D* tel que $\overrightarrow{CD} = -\overrightarrow{u}$.
- 4) Placer les points E, F, G, H et I tels que : $\overrightarrow{AE} = 2\overrightarrow{u} + \overrightarrow{v}; \quad \overrightarrow{BF} = 2\overrightarrow{v} \overrightarrow{u};$ $\overrightarrow{AG} = \frac{3}{2}\overrightarrow{u} + \frac{2}{3}\overrightarrow{v}; \quad \overrightarrow{BH} = -\frac{3}{2}\overrightarrow{u} + \frac{5}{3}\overrightarrow{v}; \quad \overrightarrow{EI} = -\frac{3}{2}\overrightarrow{u} \frac{1}{3}\overrightarrow{v}.$
- ♦ **VEC.16** Soit ABC un triangle. Placer les points D, E, F, G et H tels que :

$$\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{BC}; \quad \overrightarrow{AE} = \overrightarrow{AC} + \overrightarrow{AB};$$

$$\overrightarrow{BF} = 2\overrightarrow{AC} + \overrightarrow{BA}; \quad \overrightarrow{AG} = \frac{3}{2}\overrightarrow{BC} + \overrightarrow{BE}; \quad \overrightarrow{CH} = -\frac{1}{2}\overrightarrow{AB} - \overrightarrow{CB}.$$

♦ **VEC.17** A et B sont deux points distincts. Placer les points M, N, P et Q tels que :

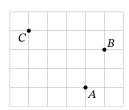
$$\overrightarrow{AM} = \frac{5}{2}\overrightarrow{AB}; \quad \overrightarrow{NA} = 3\overrightarrow{AB}; \quad \overrightarrow{BP} = \overrightarrow{AB}; \quad \overrightarrow{BQ} = -2\overrightarrow{AQ}.$$

♦ **VEC.18** Soit ABC un triangle. Placer les points D, E, F et G tels que :

$$\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC}; \quad \overrightarrow{EA} = \overrightarrow{CA} + \overrightarrow{CB};$$

 $\overrightarrow{FB} + \overrightarrow{AC} = 2\overrightarrow{BC}; \quad \overrightarrow{AG} + \overrightarrow{BG} = \overrightarrow{AB} - 2\overrightarrow{BC}.$

♦ VEC.19 On dispose de la figure ci-dessous :



1) Reproduire cette figure puis placer les points *M*, *N* et *P* tels que :

$$\overrightarrow{AM} = 2\overrightarrow{AB} + \overrightarrow{BC}; \quad \overrightarrow{AN} = 2\overrightarrow{BC} + \overrightarrow{BA};$$

 $\overrightarrow{BP} = -2\overrightarrow{BA} - \frac{3}{2}\overrightarrow{AC}$

2) On pose $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{BC}$. Soit *R* le point tel que :

$$\overrightarrow{RA} - 4\overrightarrow{CB} = 3\overrightarrow{AC}$$

- a) À l'aide de la relation de Chasles, exprimer \overrightarrow{AR} en fonction de \overrightarrow{u} et \overrightarrow{v} .
- **b)** Placer le point *R*.
- 3) a) Exprimer \overrightarrow{MN} en fonction de \overrightarrow{u} et \overrightarrow{v} .
 - **b)** En déduire la nature de *ARNM*.
- ightharpoonup VEC.20 Soit *ABC* un triangle. On considère les points *D* et *E* définis par :

$$\overrightarrow{AD} = 3\overrightarrow{AB} + \overrightarrow{AC}$$
 et $\overrightarrow{CE} = 3\overrightarrow{BA}$

Démontrer que C est le milieu de [DE].

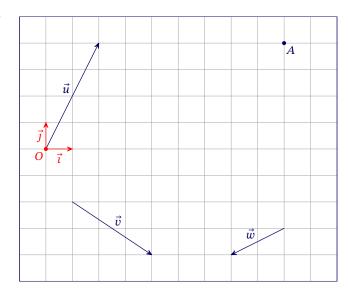
♦ **VEC.21** *ABC* est un triangle. Les points M, N et P sont définis de la façon suivante :

M est le symétrique de C par rapport à B, $\overrightarrow{AN} = 2\overrightarrow{AB} + \overrightarrow{AC}$ et $\overrightarrow{AP} = 2\overrightarrow{BP}$.

- 1) Faire une figure et placer M et N.
- 2) À l'aide de la relation de Chasles, exprimer \overrightarrow{BP} en fonction de \overrightarrow{AB} . Placer le point P.
- 3) En transformant $\overrightarrow{PM} + \overrightarrow{PN}$, démontrer que P est le milieu de [MN].

Intro aux coordonnées

♦ VEC.22 On considère la figure ci-dessous où le quadrillage est uniforme :



 Compléter les pointillés par les nombres qui conviennent :

$$\vec{u} = \dots \cdot \vec{l} + \dots \cdot \vec{j};$$

$$\vec{v} = \dots \vec{i} + \dots \vec{j}.$$

On note
$$\vec{u} \begin{pmatrix} \dots \\ \dots \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} \dots \\ \dots \end{pmatrix}$.

- 2) Construire le représentant du vecteur $\vec{u} + \vec{v}$ d'origine O et un représentant du vecteur $\vec{v} + 3\vec{w}$ d'origine A.
- **3)** Compléter les pointillés par les nombres qui conviennent :

$$\vec{u} + \vec{v} = \dots \vec{i} + \dots \vec{j}.$$

$$3\vec{w} = \dots \vec{i} + \dots \vec{i}$$
.

$$\vec{v} + 3\vec{w} = \dots \vec{i} + \dots \vec{j}.$$

4) Compléter les propriétés suivantes :

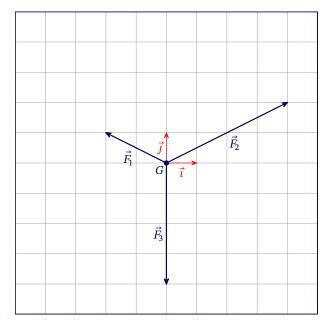
Si, dans une base
$$(\vec{i}, \vec{j})$$
, on a $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$, alors $\vec{u} + \vec{v} \begin{pmatrix} \dots \\ \dots \end{pmatrix}$.

Si, dans une base
$$(\vec{i}, \vec{j})$$
, on a $\lambda \in \mathbf{R}$ et $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$, alors $\lambda \vec{u} \begin{pmatrix} \dots & \dots \\ & & \end{pmatrix}$.

- 5) Dans le repère (O,\vec{i},\vec{j}) , les coordonnées du point A sont celles du vecteur \overrightarrow{OA} , on a : $A(\ldots, \ldots)$.
- 6) Quelles sont les coordonnées du point B tel que $\overrightarrow{OB} = 12\overrightarrow{u} 5\overrightarrow{w} + 6\overrightarrow{v}$?

 Compléter $B(\ldots, \ldots)$.
- 7) Quelles sont les coordonnées du point C tel que $\overrightarrow{AC} = \frac{1}{4}\overrightarrow{u} \frac{1}{2}\overrightarrow{v}$?

 Compléter $C(\ldots, \ldots)$.
- ♦ VEC.23 En physique, on peut représenter les forces s'exerçant sur un solide par des vecteurs. Un système est équilibré (c'est-à-dire qu'il ne bouge plus par rapport au référentiel terrestre) lorsque la somme des forces qui s'exercent sur lui est nulle.



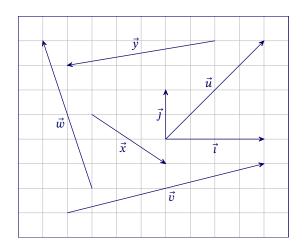
1) Écrire les coordonnées des vecteurs forces \vec{F}_1 , \vec{F}_2 et \vec{F}_3 relativement à la base (\vec{l},\vec{j}) :

$$ec{F_1}igg(\hspace{1cm} igg) \hspace{1cm} ec{F_2}igg(\hspace{1cm} igg) \hspace{1cm} ec{F_3}igg(\hspace{1cm} igg)$$

- 2) Déterminer si le système représenté par le solide assimilé à un point G et les trois forces s'exerçant sur lui $\vec{F_1}$, $\vec{F_2}$ et $\vec{F_3}$ est à l'équilibre.
- 3) On suppose que l'on peut modifier la valeur de la force $\vec{F_1}$, c'est-à-dire la norme du vecteur $\vec{F_1}$, mais pas sa direction. Peut-on faire en sorte que le système soit à l'équilibre?

Coordonnées

- ♦ VEC.24 On donne la figure ci-dessous.
- 1) Exprimer les vecteurs \vec{u} , \vec{v} , \vec{w} , \vec{x} et \vec{y} en fonction de \vec{i} et \vec{j} .
- 2) Donner les coordonnées dans la base $(\vec{i}; \vec{j})$ de chacun de ces vecteurs.



Dans les exercices suivants, on se place dans un repère $(0; \vec{i}, \vec{j})$.

♦ **VEC.25** Tracer deux vecteurs \vec{i} et \vec{j} .

Tracer un représentant de chacun des vecteurs suivants dans la base $(\vec{i}; \vec{j})$:

$$\vec{u} \begin{pmatrix} 2 \\ 3 \end{pmatrix}; \quad \vec{v} \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}; \quad \vec{w} \begin{pmatrix} -\frac{2}{3} \\ \frac{7}{4} \end{pmatrix}; \quad \vec{x} \begin{pmatrix} -2 \\ \frac{3}{4} \end{pmatrix}.$$

♦ **VEC.26** On considère les vecteurs $\vec{a} \begin{pmatrix} -2 \\ 4 \end{pmatrix}$, $\vec{b} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$,

$$\vec{c} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
 et $\vec{d} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ et une base $(\vec{i}; \vec{j})$.

Déterminer les coordonnées des vecteurs \vec{u} , \vec{v} , \vec{w} , \vec{x} et \vec{y} définis par :

$$\vec{u} = -3\vec{a}; \quad \vec{v} = \vec{b} + \vec{c}; \quad \vec{w} = 2\vec{c} + 3\vec{d};$$

 $\vec{x} = 2\vec{a} - 4\vec{b}; \quad \vec{y} = -\frac{3}{2}\vec{a} + \frac{1}{3}\vec{d}.$

- ♦ **VEC.27** On considère les points A(2;3), B(1;-2), C(-3;-3) et D(0;2).
- 1) Calculer les coordonnées des vecteurs

$$\overrightarrow{AB}$$
, \overrightarrow{AC} , \overrightarrow{BC} et \overrightarrow{DC} .

2) Calculer les coordonnées des vecteurs

$$\overrightarrow{AB} + \overrightarrow{AC}$$
, $2\overrightarrow{BC} - \overrightarrow{DC}$ et $3\overrightarrow{AB} + 2\overrightarrow{BD}$.

- ♦ **VEC.28** Le quadrilatère *ABCD* est-il un parallélogramme?
- 1) A(-1;3); B(-3;-2); C(1;-1); D(3;4).
- **2)** A(-3;2); B(3;0); C(2;-4); D(-5;-2).
- ♦ **VEC.29** On considère les points A(2;1), B(-2;3) et C(-1;-1). Déterminer les coordonnées du point M tel que :

$$\overrightarrow{BM} = \overrightarrow{CA} + \overrightarrow{BA}$$
.

VEC.30 On considère les points A(-3;4) et I(2;-4).

Déterminer les coordonnées de B tel que I soit le milieu de [AB].

- ♦ **VEC.31** On considère les points A(2;1), B(1;-1) et C(5;0).
- **1)** Calculer les coordonnées de *D* tel que *ABCD* soit un parallélogramme.
- **2)** Calculer les coordonnées de *E*, le symétrique de *C* par rapport à *A*.
- ♦ **VEC.32** On considère les points A, B et C de coordonnées A(-2;2), B(1;3), $C(\frac{1}{2};0)$.

Calculer les coordonnées du point *D* tel que *ABCD* soit un parallélogramme.

- ♦ **VEC.33** On considère les points A(-2;2), B(5;6), C(4;-1) et J le milieu de [AC].
- 1) Placer les points dans le repère.
- 2) Déterminer les coordonnées de M tel que :

$$\overrightarrow{MC} = \frac{1}{3}\overrightarrow{AC}$$
.

- **3)** Déterminer les coordonnées de *D* tel que *ABCD* soit un parallélogramme.
- **4)** Déterminer les coordonnées de *N* tel que :

$$\overrightarrow{IN} = 3\overrightarrow{IM}$$
.

5) Déterminer les coordonnées de P tel que :

$$\overrightarrow{PA} + 3\overrightarrow{PB} = \overrightarrow{0}$$
.

6) Déterminer les coordonnées de *R* tel que :

$$3\overrightarrow{RA} - 2\overrightarrow{RB} - \overrightarrow{RC} = 2\overrightarrow{AB}$$
.