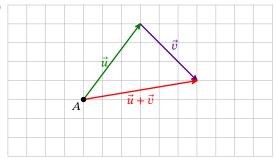
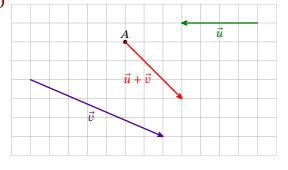
Correction d'exercices

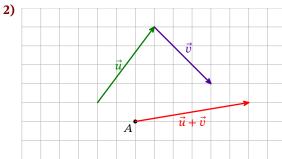
♦ VEC.9 Dans chacun des cas ci-dessous, construire le 6) vecteur d'origine A égal à la somme $\vec{u} + \vec{v}$.

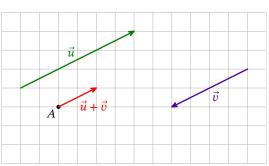
1)

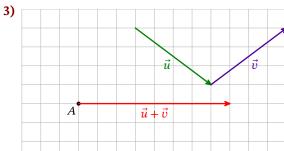


7)

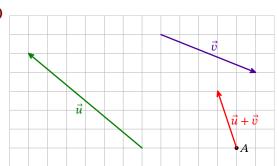




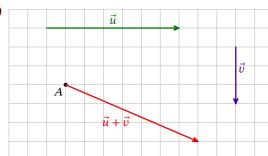




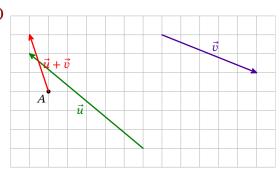
8)



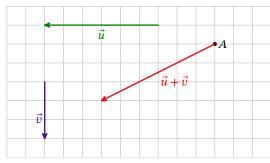
4)



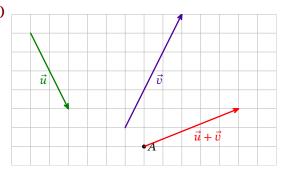
9)



5)



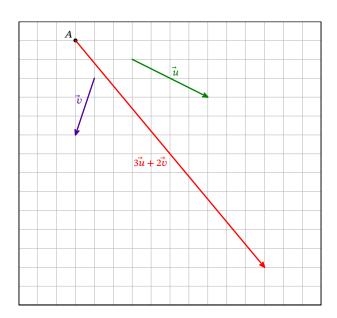
10)



1 Seconde GT - 2025/2026

VEC.11 Dans chacun des cas, reproduire la figure et construire le vecteur d'origine A égal à $3\vec{u} + 2\vec{v}$.

Correction exercice 11:



♦ VEC.15 On dispose de la figure ci-dessous :

1) Reproduire cette figure et placer un point A.

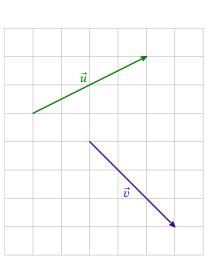
2) Placer les points B et C tels que $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{AC} = \overrightarrow{v}$.

3) Placer le point D tel que $\overrightarrow{CD} = -\overrightarrow{u}$.

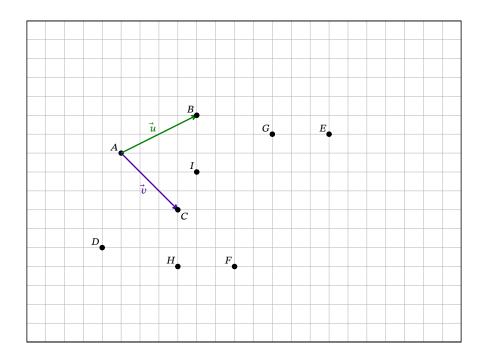
4) Placer les points *E*, *F*, *G*, *H* et *I* tels que :

$$\overrightarrow{AE} = 2\overrightarrow{u} + \overrightarrow{v}; \quad \overrightarrow{BF} = 2\overrightarrow{v} - \overrightarrow{u}; \quad \overrightarrow{AG} = \frac{3}{2}\overrightarrow{u} + \frac{2}{3}\overrightarrow{v}; \quad \overrightarrow{BH} = -\frac{3}{2}\overrightarrow{u} + \frac{5}{3}\overrightarrow{v};$$

$$\overrightarrow{EI} = -\frac{3}{2}\overrightarrow{u} - \frac{1}{3}\overrightarrow{v}.$$



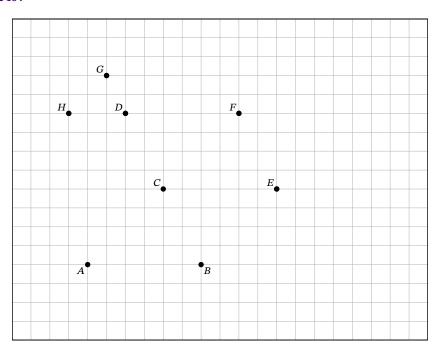
Correction exercice 15:



♦ **VEC.16** Soit ABC un triangle. Placer les points D, E, F, G et H tels que :

$$\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{BC}; \quad \overrightarrow{AE} = \overrightarrow{AC} + \overrightarrow{AB}; \quad \overrightarrow{BF} = 2\overrightarrow{AC} + \overrightarrow{BA}; \quad \overrightarrow{AG} = \frac{3}{2}\overrightarrow{BC} + \overrightarrow{BE}; \quad \overrightarrow{CH} = -\frac{1}{2}\overrightarrow{AB} - \overrightarrow{CB}.$$

Correction exercice 16:



 $lackbox{VEC.17}\ A$ et B sont deux points distincts horizontalement de 3 carreaux. Placer les points M,N,P et Q tels que :

$$\overrightarrow{AM} = \frac{5}{2}\overrightarrow{AB}; \quad \overrightarrow{NA} = 3\overrightarrow{AB}; \quad \overrightarrow{BP} = \overrightarrow{AB}; \quad \overrightarrow{BQ} = -2\overrightarrow{AQ}.$$

Correction exercice 17: Pour *N*, écrire $\overrightarrow{AN} = -\overrightarrow{NA} = 3\overrightarrow{BA}$.

Pour Q, écrire :

$$\overrightarrow{BQ} = -2\overrightarrow{AQ}$$

$$\iff \overrightarrow{QB} = 2\overrightarrow{AQ}$$

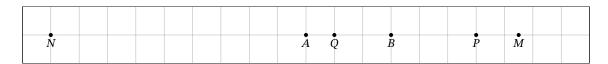
$$\iff \overrightarrow{QB} = 2\left(\overrightarrow{AB} + \overrightarrow{BQ}\right)$$

$$\iff \overrightarrow{QB} = 2\overrightarrow{AB} + 2\overrightarrow{BQ}$$

$$\iff \overrightarrow{QB} - 2\overrightarrow{BQ} = 2\overrightarrow{AB}$$

$$\iff 3\overrightarrow{QB} = 2\overrightarrow{AB}$$

$$\iff \overrightarrow{BQ} = \frac{2}{3}\overrightarrow{BA}.$$



♦ **VEC.18** Soit *ABC* un triangle. Placer les points *D*, *E*, *F* et *G* tels que :

$$\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC}; \quad \overrightarrow{EA} = \overrightarrow{CA} + \overrightarrow{CB}; \quad \overrightarrow{FB} + \overrightarrow{AC} = 2\overrightarrow{BC}; \quad \overrightarrow{AG} + \overrightarrow{BG} = \overrightarrow{AB} - 2\overrightarrow{BC}.$$

Correction exercice 18 : Pour E, écrire $\overrightarrow{AE} = \overrightarrow{AC} + \overrightarrow{BC}$.

Pour F, écrire : $\overrightarrow{BF} = \overrightarrow{AC} + 2\overrightarrow{CB}$.

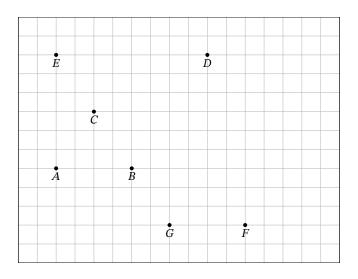
Pour G, écrire :

$$\overrightarrow{AG} + \overrightarrow{BG} = \overrightarrow{AB} - 2\overrightarrow{BC}$$

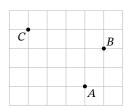
$$\iff \overrightarrow{AG} + \overrightarrow{BA} + \overrightarrow{AG} = \overrightarrow{AB} - 2\overrightarrow{BC}$$

$$\iff 2\overrightarrow{AG} = 2\overrightarrow{AB} - 2\overrightarrow{BC}$$

$$\iff \overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{CB}.$$



♦ VEC.19 On dispose de la figure ci-dessous :



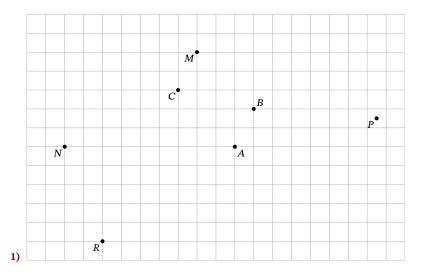
1) Reproduire cette figure puis placer les points M, N et P tels que :

$$\overrightarrow{AM} = 2\overrightarrow{AB} + \overrightarrow{BC}; \quad \overrightarrow{AN} = 2\overrightarrow{BC} + \overrightarrow{BA}; \quad \overrightarrow{BP} = -2\overrightarrow{BA} - \frac{3}{2}\overrightarrow{AC}.$$

2) On pose $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{BC}$. Soit *R* le point tel que :

$$\overrightarrow{RA} - 4\overrightarrow{CB} = 3\overrightarrow{AC}$$
.

- a) À l'aide de la relation de Chasles, exprimer \overrightarrow{AR} en fonction de \overrightarrow{u} et \overrightarrow{v} .
- **b)** Placer le point *R*.
- 3) a) Exprimer \overrightarrow{MN} en fonction de \vec{u} et \vec{v} .
 - **b)** En déduire la nature de *ARNM*.
- **Correction exercice 19:**



2) a)

$$\overrightarrow{RA} - 4\overrightarrow{CB} = 3\overrightarrow{AC}$$

$$\iff \overrightarrow{RA} = 4\overrightarrow{CB} + 3\overrightarrow{AC}$$

$$\iff \overrightarrow{AR} = 4\overrightarrow{BC} + 3\overrightarrow{CA}$$

$$\iff \overrightarrow{AR} = 4\overrightarrow{BC} + 3\overrightarrow{CA}$$

$$\iff \overrightarrow{AR} = 4\overrightarrow{BC} + 3\overrightarrow{CB} + 3\overrightarrow{BA}$$

$$\iff \overrightarrow{AR} = 4\overrightarrow{BC} + 3\overrightarrow{CB} + 3\overrightarrow{BA}$$

$$\iff \overrightarrow{AR} = -3\overrightarrow{AB} + \overrightarrow{BC}$$

$$\iff \overrightarrow{AR} = -3\overrightarrow{u} + \overrightarrow{v}.$$

b)

3) a)

$$\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AN}$$

$$= -2\overrightarrow{AB} - \overrightarrow{BC} + 2\overrightarrow{BC} + \overrightarrow{BA}$$

$$= -3\overrightarrow{AB} + \overrightarrow{BC}$$

$$= -3\overrightarrow{u} + \overrightarrow{v}.$$

- **b)** $\overrightarrow{MN} = \overrightarrow{AR}$ donc le quadrilatère ARNM est un parallélogramme.
- \blacklozenge VEC.20 Soit ABC un triangle. On considère les points D et E définis par :

$$\overrightarrow{AD} = 3\overrightarrow{AB} + \overrightarrow{AC}$$
 et $\overrightarrow{CE} = 3\overrightarrow{BA}$

Démontrer que C est le milieu de [DE].

Correction exercice 20 : Montrons que $\overrightarrow{CD} + \overrightarrow{CE} = \overrightarrow{0}$.

$$\overrightarrow{CD} + \overrightarrow{CE} = \overrightarrow{CA} + \overrightarrow{AD} + 3\overrightarrow{BA}$$
$$= -\overrightarrow{AC} + 3\overrightarrow{AB} + \overrightarrow{AC} - 3\overrightarrow{AB}$$
$$= \overrightarrow{0}.$$

Ainsi, C est le milieu de [DE].

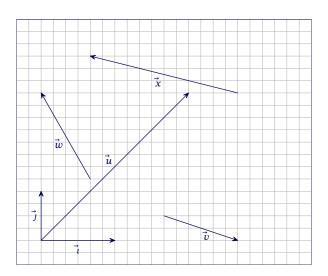
♦ VEC.25

Tracer deux vecteurs \vec{i} et \vec{j} .

Tracer un représentant de chacun des vecteurs suivants dans la base $(\vec{i}; \vec{j})$:

$$\vec{u} \begin{pmatrix} 2 \\ 3 \end{pmatrix}; \quad \vec{v} \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}; \quad \vec{w} \begin{pmatrix} -\frac{2}{3} \\ \frac{7}{4} \end{pmatrix}; \quad \vec{x} \begin{pmatrix} -2 \\ \frac{3}{4} \end{pmatrix}.$$

Correction exercice 25:



♦ VEC.26

On considère les vecteurs $\vec{a} \begin{pmatrix} -2 \\ 4 \end{pmatrix}$, $\vec{b} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$, $\vec{c} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ et $\vec{d} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ et une base $(\vec{i}; \vec{j})$.

Déterminer les coordonnées des vecteurs \vec{u} , \vec{v} , \vec{w} , \vec{x} et \vec{y} définis par :

$$\vec{u} = -3\vec{a}; \quad \vec{v} = \vec{b} + \vec{c}; \quad \vec{w} = 2\vec{c} + 3\vec{d}; \quad \vec{x} = 2\vec{a} - 4\vec{b}; \quad \vec{y} = -\frac{3}{2}\vec{a} + \frac{1}{3}\vec{d}.$$

Correction exercice 26: On considère les vecteurs suivants : $\vec{a} \begin{pmatrix} -2 \\ 4 \end{pmatrix}$, $\vec{b} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$, $\vec{c} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ et $\vec{d} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$.

On cherche les coordonnées des vecteurs $\vec{u}, \vec{v}, \vec{w}, \vec{x}$ et \vec{y} définis par :

$$\vec{u} = -3\vec{a}, \ \vec{v} = \vec{b} + \vec{c}, \ \vec{w} = 2\vec{c} + 3\vec{d}, \ \vec{x} = 2\vec{a} - 4\vec{b}, \ \vec{y} = -\frac{3}{2}\vec{a} + \frac{1}{3}\vec{d}.$$

$$\vec{u} = -3\vec{a} = -3 \begin{pmatrix} -2\\4 \end{pmatrix} = \begin{pmatrix} 6\\-12 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} 3\\-2 \end{pmatrix} + \begin{pmatrix} -2\\1 \end{pmatrix} = \begin{pmatrix} 1\\-1 \end{pmatrix},$$

$$\vec{w} = 2 \begin{pmatrix} -2\\1 \end{pmatrix} + 3 \begin{pmatrix} 0\\3 \end{pmatrix} = \begin{pmatrix} -4\\11 \end{pmatrix}, \quad \vec{x} = 2 \begin{pmatrix} -2\\4 \end{pmatrix} - 4 \begin{pmatrix} 3\\-2 \end{pmatrix} = \begin{pmatrix} -16\\16 \end{pmatrix},$$

$$\vec{y} = -\frac{3}{2} \begin{pmatrix} -2\\4 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 0\\3 \end{pmatrix} = \begin{pmatrix} 3\\-5 \end{pmatrix}.$$

Ainsi:

$$\vec{u} \begin{pmatrix} 6 \\ -12 \end{pmatrix}, \quad \vec{v} \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad \vec{w} \begin{pmatrix} -4 \\ 11 \end{pmatrix}, \quad \vec{x} \begin{pmatrix} -16 \\ 16 \end{pmatrix}, \quad \vec{y} \begin{pmatrix} 3 \\ -5 \end{pmatrix}.$$