14 Théorème des Valeurs Intermédiaires

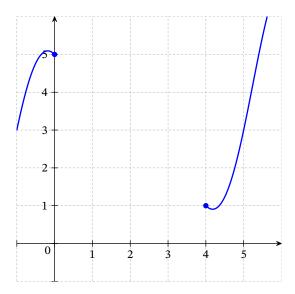
1 Contexte

Théorème 14.1 (T.V.I) — Si f est **continue** sur [a,b], alors tout réel k compris entre f(a) et f(b) admet au moins un antécédent dans [a,b] par f.

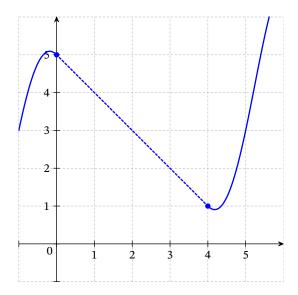
Autrement dit, l'équation f(x) = k admet au moins une solution dans [a,b].

Mais késkeçaveudire?

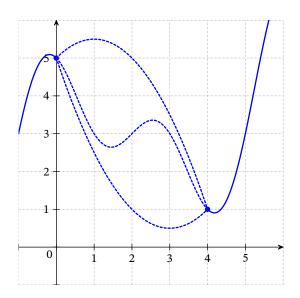
L'idée est qu'une fonction continue sur un intervalle doit passer par toutes les valeurs intermédiaires entre deux images. Par exemple, voici une fonction f (courbe en bleu):



Sa courbe, pour passer du point (0,5) au point (4,1), doit forcément "traverser" l'intervalle [1;5], parce que f est continue, par exemple comme ceci :



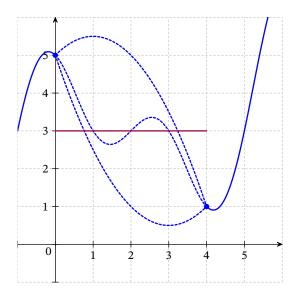
Mais on peut imaginer bien d'autres manières de faire :



Le TVI permet d'affirmer que par exemple, l'équation

$$f(x) = 3$$

admet au moins une solution (mais potentiellement, plus d'une!) pour x dans l'intervalle [0;4], comme on peut le constater graphiquement dans nos exemples :



Remarque cruciale 1 L'équation f(x) = k n'admet qu'une solution si f est strictement croissante, ou strictement décroissante, sur l'intervalle [a,b]. Cela est souvent utilisé en pratique pour justifier de l'unicité de la solution à l'équation f(x) = k!

2 Un exemple

Méthode 14.1

Comment appliquer le TVI?

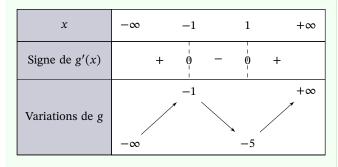
Exemple 1 (Démontrer que l'équation $x^3 - 3x - 2 = 0$ admet une unique solution α sur [1,3].)

On pose $g(x) = x^3 - 3x - 2$.

g est polynomiale donc dérivable sur \mathbf{R} et pour tout réel x:

$$g'(x) = 3x^2 - 3$$

On a donc g'(x) = 3(x-1)(x+1) d'où :



Les limites sont obtenues comme d'habitude en $\pm \infty$ pour une expression polynomiale, en factorisant ici par x^3 . Voici maintenant les trois points cruciaux à vérifier pour appliquer le T.V.I :

- g est polynomiale donc continue sur **R**, en particulier sur [1;3];
- g(1) = -5 < 0;
- g(3) = 15 > 0.

On peut conclure d'après le T.V.I que l'équation g(x) = 0 admet une solution sur l'intervalle [1;3]. Comme de plus g est strictement croissante sur [1,3], la solution est unique.

Méthode 14.2

Comment encadrer la solution α ?

- Exemple 2 (Montrer que $2,103 < \alpha < 2,104$.) Ici, c'est la stricte croissance de g qui est cruciale : on calcule donc :
- g(2,103) = -0,008253273
- g(2,104) = 0,002020864

Donc $2{,}103 < \alpha < 2{,}104$.

Remarque 2 Remarquez que dans le calcul de g(2,103) et g(2,104), on a besoin des valeurs exactes, mais le jour du bac, si vous donnez des valeurs approchées ou précisez juste la position des valeurs par rapport à l'image recherchée, ça devrait aller...

Remarque 3 Remarquez que la valeur α est définie implicitement par le fait que $g(\alpha)=0$. On a donc

$$\alpha^3 - 3\alpha - 2 = 0.$$

Parfois, certaines questions nécessitent d'écrire cette égalité pour en montrer une autre où α intervient.