4 Résolutions graphiques

On fait la science avec des faits, comme on fait une maison avec des pierres : mais une accumulation de faits n'est pas plus une science qu'un tas de pierres n'est une maison.

Henri Poincaré (1854-1912).

I Résolution graphique d'équations

4.1.1 Équation du type f(x) = k

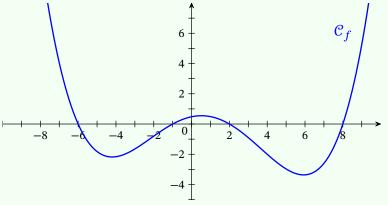
Proposition 4.1 (Résolution graphique de l'équation f(x) = k) — Si k est un réel et f une fonction, résoudre graphiquement une équation du type f(x) = k, c'est **trouver tous les antécédents de** k **par la fonction** f, **visuellement via la courbe de** f.

Exemple 1 Considérons la fonction définie par la courbe ci-dessous et résolvons graphiquement l'équation f(x) = 3.

Pour cela:

- on commence par tracer la droite horizontale d'ordonnée 3;
- on étudie les points d'intersection de cette droite avec la courbe de f;
- on lit graphiquement les abscisses des points obtenus : ce sont les solutions de l'équation f(x) = 3.

Ici, graphiquement, on obtient deux solutions: leurs valeurs sont environ -6,9 et environ 8.8.



4.1.2 Équation du type f(x) = g(x)

Proposition 4.2 (Résolution graphique de l'équation f(x) = g(x)) — Résoudre graphiquement l'équation f(x) = g(x), c'est déterminer les abscisses des points d'intersection des courbes de f et g.

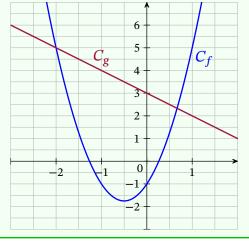
Exemple 2 On cherche à résoudre graphiquement l'équation $3x^2 + 3x - 1 = 3 - x$.

On considère les fonctions f et g définies sur \mathbf{R} par :

- $f(x) = 3x^2 + 3x 1$
- g(x) = 3 x

Et leurs courbes dans le repère ci-contre.

On obtient deux points d'intersection, leurs abscisses nous donnent les solutions de l'équation f(x) = g(x), ici environ -2 et environ 0.7.



Remarque 1 Seule une résolution algébrique de l'équation nous permettrait de prouver qu'il y a bien deux solutions à cette équation, et de déterminer leurs valeurs exactes.

II Résolution graphique d'inéquations

4.2.1 Inéquation du type f(x) < k

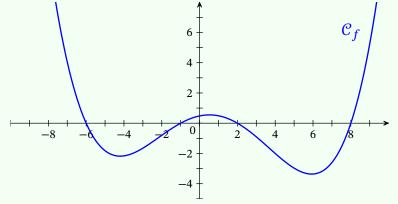
Proposition 4.3 (Résolution graphique de l'inéquation f(x) < k) — Résoudre graphiquement une équation du type f(x) < k, c'est trouver tous les nombres x dont l'image par f est strictement inférieure à k. Visuellement, cela revient à trouve toutes les abscisses des points pour lesquels la courbe de f est strictement en-dessous de la droite horizontale d'ordonnée k.

Exemple 3 On reprend la fonction de l'exemple précédent et on cherche à résoudre graphiquement l'inéquation f(x) < 3.

Pour cela:

- on commence par tracer la droite horizontale d'ordonnée 3;
- on lit graphiquement les abscisses des points où la courbe est strictement en-dessous de la droite : ce sont les solutions de l'inéquation f(x) < 3.

Ici, graphiquement, on obtient un intervalle ouvert solution :] – 6,9;8,8[.



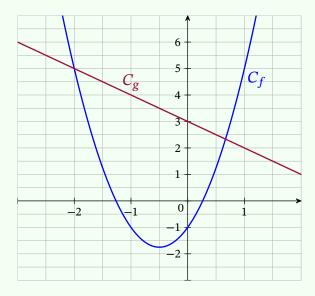
4.2.2 Inéquation du type f(x) < g(x)

Proposition 4.4 (Résolution graphique de l'équation f(x) < g(x)) — Résoudre graphiquement l'inéquation f(x) < g(x), c'est déterminer les abscisses des points pour lesquels la courbe de f est strictement en-dessous de celle de g.

Exemple 4 (Inéquation $3x^2 + 3x - 1 < 3 - x$.)

Comme précédemment, on considère les fonctions f et g définies sur \mathbf{R} par :

- $f(x) = 3x^2 + 3x 1$
- g(x) = 3 x



On obtient un intervalle ouvert : environ]-2;0,7[.

Remarque 2 Encore une fois, la résolution graphique ne permet que de conjecturer les solutions.

III Exercices

Résolutions graphiques d'(in)équations

- igoplus EG.1 On considère la fonction f donnée par la courbe de la figure 7.
- 1) Résoudre graphiquement les équations :

$$(E_1)$$
: $f(x) = 1$ et (E_2) : $f(x) = 0$.

2) Résoudre graphiquement les inéquations :

$$(I): f(x) > 0 \text{ et } (I'): f(x) \le 0.$$

- igoplus EG.2 On considère la fonction f donnée par la courbe de la figure 15.
- 1) Résoudre graphiquement les équations :

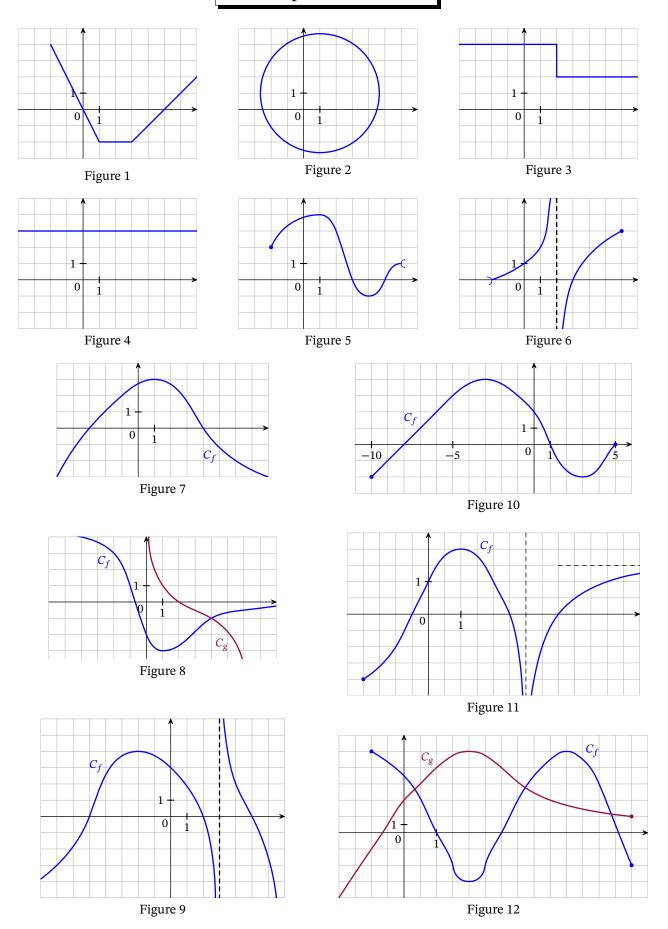
$$(E_1)$$
: $f(x) = 4$ et (E_2) : $f(x) = 2$.

- 2) Quel est le nombre de solutions de l'équation f(x) = 0?
- 3) Résoudre graphiquement les inéquations :

$$(I_1)$$
: $f(x) > 4$ et (I_2) : $f(x) \le 2$.

- **\blacklozenge EG.3** Les fonctions f et g sont données par les courbes de la figure 8.
- **1)** Résoudre l'équation (E): f(x) = g(x).
- 2) Résoudre dans $]0;+\infty[,(I):f(x)>g(x).$
- **EG.4** Les fonctions f et g sont données par les courbes de la figure 14.
- 1) Résoudre l'équation (E): f(x) = g(x).
- 2) Résoudre dans **R** l'inéquation $f(x) \le g(x)$.

Courbes pour les exercices



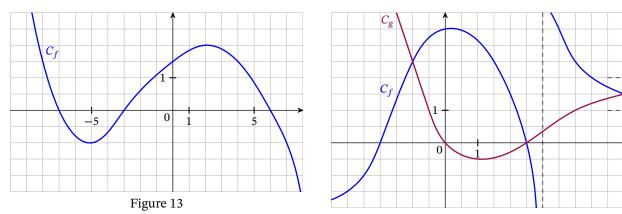


Figure 14

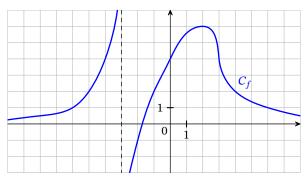


Figure 15

Lycée Ella Fitzgerald – 2025/2026