5 Fonctions affines

L'activité mathématique exige une pratique quotidienne. Si l'on s'interrompt trop longtemps, le savoir-faire s'érode. Les automatismes se perdent. C'est heureusement transitoire. On peut comparer cela à l'expérience des musiciens : Arthur Rubinstein disait « quand j'arrête de jouer une journée, je l'entends, quand j'arrête deux jours, le critique l'entend, quand j'arrête trois jours, le public l'entend.»

Alain Connes (1947 -).

I Fonctions affines

5.1.1 Définition

Définition 1 (Fonction affine) — Une **fonction affine** est une fonction (définie sur \mathbf{R}) telle qu'il existe deux réels m et p tels que pour tout réel x:

$$f(x) = mx + p$$
.

m est appelé le **coefficient directeur** de la fonction affine, *p* est appelé **l'ordonnée à l'origine** de la fonction.

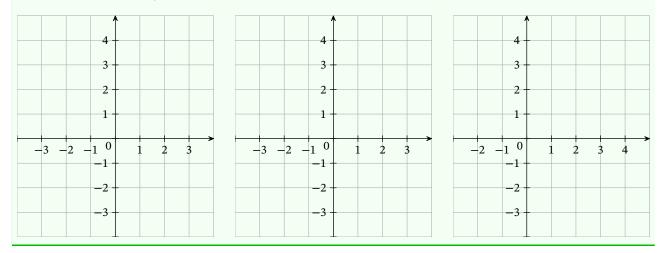
Exemple 1 Voici des exemples d'expressions de fonctions affines :

•
$$f_1(x) = 2x$$

•
$$f_2(x) = 3$$

•
$$f_3(x) = -0.25x + 1$$

Et leurs représentations graphiques :



II Interprétations graphiques

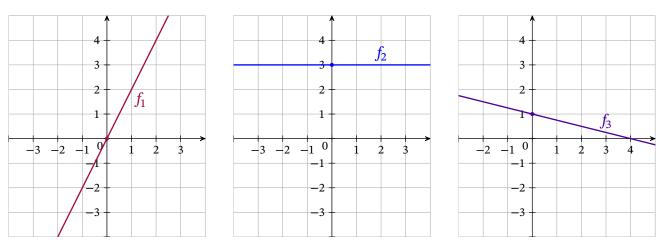
5.2.1 L'ordonnée à l'origine

Regardons d'un peu plus près chacune de ces fonctions. On constate tout d'abord que leurs représentations graphiques sont des droites, et c'est en fait vrai pour toute fonction affine.

Proposition 5.1 (Représentation graphique d'une fonction linéaire, admis) — *La représentation graphique d'une fonction affine est une droite.*

On peut aussi remarquer que l'expression de la fonction peut se "lire" directement sur le graphique : en effet, f(0) = p donc l'ordonnée à l'origine est la valeur en ordonnée où la droite coupe l'axe des ordonnées :

Seconde – 2025/2026 1



On peut aussi constater que la fonction f_1 passe par l'origine du repère : on dit que c'est une fonction **linéaire**. La fonction f_2 associe la valeur 3 à n'importe quelle valeur de x : on dit que c'est une **fonction constante**.

Définition 2 (Cas particuliers) — Soit $f: x \mapsto mx + p$ une fonction affine.

•

Proposition 5.2 (Représentation graphique d'une fonction linéaire, admis) — *La représentation graphique d'une fonction linéaire est une droite passant par l'origine.*

5.2.2 Le coefficient directeur

Proposition 5.3 (Calcul du coefficient directeur) — Soit f une fonction affine telle que pour tout x réel, on a: f(x) = mx + p.

On suppose que la courbe de f (qui est une droite) passe par les points $A(x_A; y_A)$ et $B(x_B; y_B)$. Alors le coefficient directeur m est donné par :

et on obtient p en utilisant le fait que par exemple, $f(x_A) = y_A$.

Remarque 1 Souvent, on utilise le symbole « Δ » qui est la lettre majuscule grecque «Delta », pour exprimer une différence :

On se donne une droite (courbe de f) ci-dessous et on cherche l'expression f(x) = mx + p. Le coefficient directeur m est :

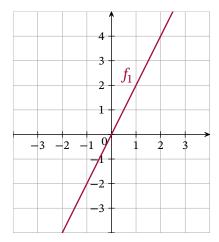
De plus, la droite passe par le point de coordonnées (1;0)

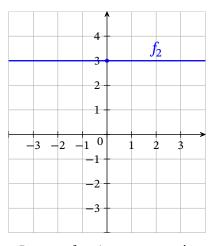
Ainsi, f(1) = 0 donc $0 = 0.5 \times 1 + p$ donc p = -0.5. L'ordonnée à l'origine est donc de -0.5, ce qui correspond bien aux coordonnées du point C(0; -0.5). Ainsi, l'expression de f est f(x) = 0.5x - 0.5.

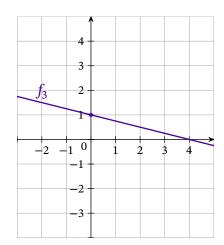
2

 $\Delta x = x_B - x_A$

Remarque 2 On peut également, dans les cas "simples", lire le coefficient directeur par la croissance ou décroissance de la fonction lorsque qu'on «avance » d'une unité en abscisse :







Ici, c'est facile : m = 2.

Pour une fonction constante, c'est aussi très simple : m = 0.

Ici, c'est plus dur et pour trouver m, il faut choisir deux points de la droite et utiliser la proposition précédente.

III Sens de variation et signe d'une fonction affine

5.3.1 Sens de variation

Proposition 5.4 (Variations d'une fonction affine) — Soit $f: x \mapsto mx + p$ une fonction affine. Alors les variations de f dépendent du signe de m.

• Si m > 0:

x	-∞	+∞
Variations de f		

• $Si \ m < 0$:

x	-∞ +∞	
Variations de f		

- Si m = 0,
- Exemple 3
- $x \mapsto 3x + 1$ est strictement croissante sur **R**, car 3 > 0.
- $x \mapsto -2x + 8$ est strictement décroissante sur **R**, car -2 < 0.
- $x \mapsto 5$ est constante sur **R**.

5.3.2 Signe d'une fonction affine

Proposition 5.5 (Signe d'une fonction affine) — Soit $f: x \mapsto mx + p$ une fonction affine. Alors le signe de f dépend du signe de m et de la valeur $-\frac{p}{m}$.

• Si m > 0:

x	-∞	$-\frac{p}{m}$	+∞
f(x)			

• $Si \ m < 0$:

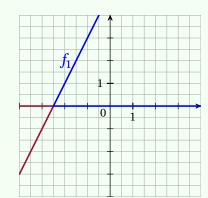
x	-∞	$-\frac{p}{m}$	+∞
f(x)			

• $Si \ m = 0$,

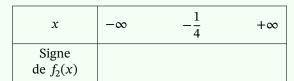
Exemple 4

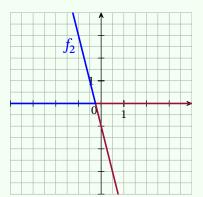
Si $f_1(x) = 2x + 5$, alors on a le tableau de signe suivant pour f_1 :

x	-∞	$-\frac{5}{2}$	+∞
Signe de $f_1(x)$			



Si $f_2(x) = -4x - 1$, alors on a le tableau de signe suivant pour f_2 :

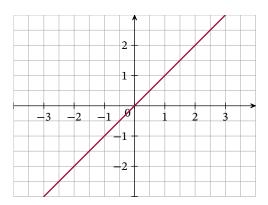


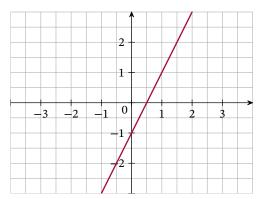


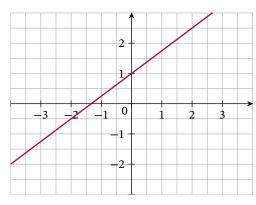
IV Exercices

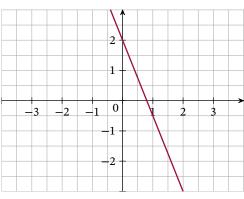
Graphiquement

ightharpoonup FA.1 Pour chaque représentation graphique cidessous, déterminer l'ordonnée à l'origine p de la droite ainsi que son coefficient directeur m.

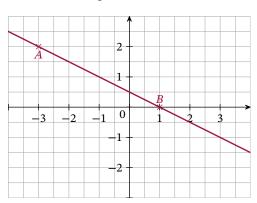


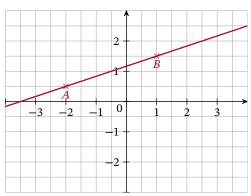




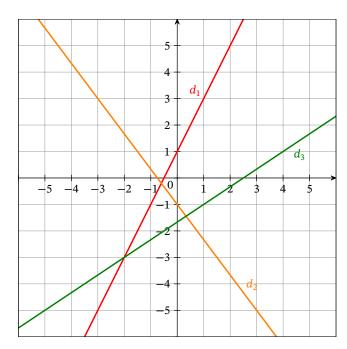


♦ FA.2 On a représenté les courbes de fonctions affines ci-dessous. En utilisant les points par lesquels passe les courbes, déterminer l'ordonnée à l'origine et le coefficient directeur de chaque fonction affine.





♦ FA.3 On se place dans le repère ci-dessous.



1) Donner, l'expression des fonctions f_1 , f_2 et f_3 dont les représentations graphiques sont les droites d_1 , d_2 et d_3 représentées ci-dessous.

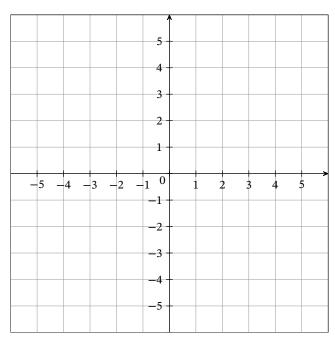
- **2)** Résoudre graphiquement l'inéquation $f_1(x) \ge f_3(x)$.
- **3)** Résoudre par le calcul l'inéquation $f_2(x) < f_3(x)$.
- 4) Tracer, sur le graphique, les courbes de :
 - **a)** f_4 d'expression : $f_4(x) = -\frac{1}{4}x 3$;
 - **b)** f_5 d'expression : $f_5(x) = \frac{2}{3}x + \frac{4}{3}$.
- 5) Justifier que les courbes de f_4 et f_5 sont sécantes et calculer les coordonnées de leur point d'intersection.
- ♦ FA.4 Dans le repère ci-dessous, tracer les courbes des fonctions suivantes :

•
$$f_1(x) = -\frac{1}{2}x + 5$$
;

•
$$f_3(x) = -3$$
;

•
$$f_2(x) = 4x - 2$$
;

•
$$f_4(x) = \frac{3}{4}x - 4$$
.



Algébriquement

♦ FA.5 La fonction f a pour expression

$$f(x) = -3x + 0.5$$
.

Déterminer si A(150,5; -451) ou B(-73,25; 219,5) appartiennent à la courbe de f.

- ♦ FA.6 Déterminer dans chaque cas l'expression de la fonction affine dont la courbe passe par :
- 1) A(0;4) et B(12;17);
- **2)** $A\left(\frac{2}{3};1\right)$ et $B\left(3;\frac{5}{4}\right)$;
- 3) $A(1+\sqrt{2};1-\sqrt{2})$ et $B(\sqrt{3};\sqrt{5})$.
- ightharpoonup FA.7 Dans chacun des cas suivants, dire si le point A appartient à la courbe de la fonction f:

- **1)** $A\left(\frac{1}{3}; \frac{13}{6}\right)$ et $f: x \mapsto 6x + \frac{1}{6};$
- 2) A(1;-7) et $f: x \mapsto -\frac{3}{4}(x+2)-5$;
- **3)** $A\left(\frac{1}{3}; \frac{1}{6}\right)$ et $f: x \mapsto \frac{1}{6}$.

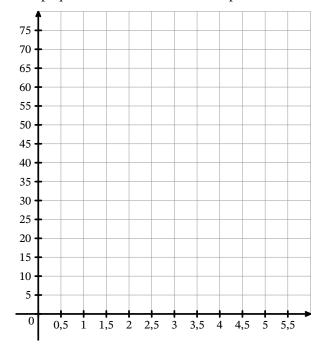
Problèmes

♦ FA.8 Luc, professeur de mathématiques, souhaite commander des chocolats pour tous ses collègues. Il hésite entre deux chocolateries prestigieuses : "La Chococcinelle" et "ChocoWonka".

On donne ci-dessous les tarifs pratiqués par ces deux chocolateries :

- "La Chococcinelle" : 10 € de frais de livraison fixes puis 16 € par kilogramme de chocolats achetés.
- "ChocoWonka": aucun frais de livraison mais le prix au kilogramme est de 20€.
- 1) Luc prévoit d'acheter 5 kilogrammes de chocolats.
 - **a)** Donner le prix qu'il devra payer pour chaque chocolaterie. Détailler les calculs.
 - **b)** En déduire la chocolaterie la plus avantageuse dans ce cas
- 2) On considère les fonctions f et g définie sur $[0; +\infty[$ telles que pour x kilogrammes de chocolats achetés, f(x) est le prix (en €) pour la chocolaterie "Chococcinelle" et g(x) est le prix pour "ChocoWonka".
 - a) Justifier que g est donnée par l'expression g(x) = 20x et que f est donnée par l'expression f(x) = 16x + 10 pour tout $x \in [0; +\infty[$.
 - b) Comment sont appelées ces fonctions?
 - c) On considère \mathcal{C}_f et \mathcal{C}_g les courbes représentatives de f et g respectivement.

Tracer les deux courbes dans le repère suivant en expliquant la démarche sur votre copie.

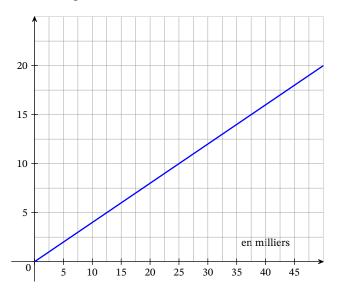


- 3) a) Par lecture graphique, déterminer quelle chocolaterie offre à Luc le plus de chocolats pour un montant de 70 €.
 - **b)** Retrouver ce résultat par le calcul.
- **4) a)** Par lecture graphique, déterminer l'ensemble des quantités de chocolats qu'on peut acheter, pour que la chocolaterie "ChocoWonka" soit la plus avantageuse.
 - **b)** Retrouver cette valeur par le calcul.
- ♦ FA.9 (Brevet 2001) Les salaires mensuels de trois commerciaux, Ernest, Gilbert et Henri, sont calculés de la manière suivante.
- Pour Ernest : 40 % du bénéfice réalisé grâce à ses ventes mensuelles.
- Pour Gilbert: 6 000 F auxquels s'ajoutent 15 % du montant du bénéfice réalisé grâce à ses ventes mensuelles.
- Pour Henri: 12 000 F (sans tenir compte de ses ventes).
- 1) a) Si le bénéfice réalisé grâce à ses ventes mensuelles est de 16 000 francs, montrer que le salaire de Gilbert est alors de 8 400 francs.
 - b) Au cours d'un mois, Ernest, Gilbert et Henri remarquent que pour chacun d'eux le bénéfice réalisé grâce à ses ventes a été de 28 000 F. Calculer le salaire mensuel de chacun d'eux.
 - c) Quel est le montant du bénéfice qu'Ernest doit réaliser sur ses ventes s'il veut obtenir 12 000 F à la fin du mois?
- 2) On désigne par *x* le montant, en francs, du bénéfice réalisé grâce aux ventes mensuelles d'un commercial.
 - a) Exprimer, en fonction de *x*, le salaire mensuel de chacun des commerciaux.
 - **b)** On a tracé ci-après, dans un repère, la représentation graphique de la fonction e définie par : e : $x \mapsto 0.40x$ pour les valeurs positive de x.
 - De quel commercial a-t-on ainsi représenté le salaire? Que représente la graduation sur l'axe des abscisses? Sur l'axe des ordonnées?
 - c) Dans le même repère, tracer la représentation graphique de la fonction g définie par $g: x \mapsto 0.15x + 6000$ pour les valeurs positives de x.
 - **d)** Représenter graphiquement le salaire de Henri dans ce même repère.

Pour répondre aux questions 3. a et 3. b., laisser les traits nécessaires à la lecture apparents sur le graphique et rédiger la réponse sur la copie.

3) a) Au cours d'un mois, Ernest, Gilbert et Henri ont remarqué que le bénéfice réalisé grâce à leurs ventes a été identique pour chacun d'eux et d'un montant de 32 000 F. En utilisant le graphique, donner une valeur approchée du salaire de chacun d'eux.

- **b)** Déterminer graphiquement une estimation du montant du bénéfice réalisé grâce à leurs ventes mensuelles pour lequel Gilbert et Henri obtiendraient le même salaire à la fin du mois.
- **c)** Trouver la valeur exacte de ce montant en résolvant une équation.



♦ FA.10 (Brevet 2003) Les parties A et B sont indépendantes.

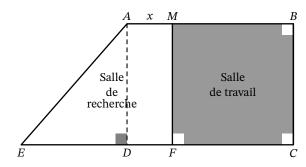
La figure ci-dessous est une vue de la surface au sol du C.D.I. d'un collège.

Ce C.D.I. doit être réaménagé en deux parties distinctes : une salle de recherche et une salle de travail.

ABCE est un trapèze rectangle tel que AB = 9 m, BC = 8 m et DE = 6 m.

M est un point du segment [AB].

On pose AM = x (x est une distance exprimée en mètre : $0 \le x \le 9$).



Rappel : l'aire d'un trapèze de hauteur h, de bases b et B, est donnée par $a = \frac{h(b+B)}{2}$.

Partie A

La documentaliste souhaite que l'aire de la salle de travail soit égale à celle de la salle de recherche.

1) Dans cette question, uniquement, on suppose : x = 1. Calculer l'aire de trapèze AMFE (salle de recherche), et l'aire du rectangle MBCF (salle de travail).

- 2) a) Exprimer, en fonction de x, l'aire du trapèze AMFE.
 - **b)** Exprimer, en fonction de *x*, l'aire du rectangle *MBCF*.
- **3)** On se propose de représenter graphiquement cette situation à l'aide de deux fonctions affines *f* et *g*.

f est définie par : f(x) = -8x + 72;

g est définie par : g(x) = 8x + 24.

Sur la feuille de papier millimétrée, construire un repère orthogonal :

- l'origine sera placée en bas à gauche,
- en abscisse, on prendra 2 cm pour 1 unité (2 cm pour 1 m).
- en ordonnée, on prendra 1 cm pour 4 unités (1 cm pour 4 m^2).

Représenter les fonctions affines f et g, pour $0 \le x \le 9$.

- **4) a)** En utilisant le graphique, indiquer la valeur de *x* pour laquelle l'aire de la salle de travail est égale à celle de la salle de recherche, ainsi que l'aire correspondante. Mettre en évidence ces valeurs sur le graphique (pointillés, couleurs...).
 - **b)** Retrouver les résultats précédents par le calcul.

Partie B

Dans cette partie, on pose x = 3.5.

- Donner en cm, les dimensions de la salle de travail MBCF.
- **2)** On souhaite recouvrir le sol de la salle de travail à l'aide d'un nombre entier de dalles carrées identiques, de côté *c* entier le plus grand possible.
 - a) Expliquer pourquoi c est le PGCD de 800 et 550.
 - b) Calculer la valeur de c, en indiquant la méthode uti-
 - **c)** Combien de dalles sont nécessaires pour recouvrir le sol de la salle de travail?
- **3)** Les dalles coûtent 13,50 euros le mètre carré. Quelle somme devra-t-on payer pour acheter le nombre de dalles nécessaire?
- ♦ FA.11 (Brevet 2005) Pour aller en train voir sa fille, Paul prévoit de faire plusieurs allers-retours entre Valy et Suret.

Deux solutions lui sont proposées.

- Formule A: voyager à plein tarif; un billet aller-retour s'élève à 170 euros.
- Formule B : acheter une carte « Escapade » coûtant 100 euros et bénéficier alors d'une réduction de 25 % pour chaque billet aller-retour.
- Soit x le nombre de voyages aller-retours.
 Exprimer, en fonction de x, le prix de revient de x voyages :

- par la formule A
- par la formule B.
- **2) a)** Construire un repère orthogonal en prenant l'origine en bas à gauche de la feuille de papier millimétré et comme unités graphiques :
 - en abscisses, 2 cm pour une unité;
 - en ordonnées, 2 cm pour 100 euros.
 - **b)** Dans le repère précédent, construire la représentation graphique de deux fonctions *A* et *B* définies par :

$$A(x) = 170x$$
 et $B(x) = 127,50x + 100$.

3) Déterminer, à l'aide du graphique, à partir de quel nombre de voyages allers-retours Paul a intérêt à acheter la carte « Escapade ».

Faire apparaître les tracés utiles.

- **4) a)** Résoudre l'inéquation 127,50x + 100 < 1000.
 - b) Paul a un budget de 1 000 euros.
 Combien peut-il faire au maximum d'allers-retours avec sa carte « Escapade »?