215 Convexité

Méthode 15.1

Comment déterminer la convexité d'une fonction?

Dans le cadre deux fois dérivable au programme, on a le théorème suivant qui permet de conclure :

Théorème 15.1 — Soit f une fonction deux fois dérivable sur I. Alors les propriétés suivantes sont équivalentes :

- f est convexe sur I;
- la courbe de f est au-dessus de ses tangentes;
- f' est croissante sur I;
- f" est positive sur I.

On a le même théorème, version concave :

Théorème 15.2 — Soit f une fonction deux fois dérivable sur I. Alors les propriétés suivantes sont équivalentes :

- f est concave sur I;
- la courbe de f est en-dessous de ses tangentes;
- f' est décroissante sur I;
- f" est négative sur I.

Exemple 1 (Convexité de la fonction $f: x \mapsto x^3 - x^2$) On calcule la dérivée de f:

$$f'(x) = 3x^2 - 2x$$

puis la dérivée seconde de f :

$$f''(x) = 6x - 2$$

Puis on étudie le signe de f''(x):

x	-∞		1/3		+∞
Signe de $f''(x)$		_	0	+	

Donc f est concave sur $\left]-\infty; \frac{1}{3}\right]$ et convexe sur $\left[\frac{1}{3}; +\infty\right[$.

Remarque 1 On peut aussi déterminer la convexité d'une fonction en ayant le tableau de variations de sa dérivée (voir l'exercice CC.12 par exemple).

Méthode 15.2

Comment montrer qu'une fonction admet un point d'inflexion?

Le cours à la rescousse :

Définition 1 (Point d'inflexion) — Si f est définie et deux fois dérivable sur I, un **point d'inflexion** de f est un point où f **change de convexité**.

Proposition 15.3 (CNS d'existence d'un point d'in-f**lexion)** — Si f est définie et deux fois dérivable sur I, alors f admet un point d'inflexion en $a \in I$ si et seulement si f'' s'annule et change de signe en a.

Exemple 2 Sur l'exemple précédent, la fonction $f: x \mapsto x^3 - x^2$ admet un point d'inflexion en 1/3.