\blacklozenge BAC.1 (Amérique du Nord, J2 Secours 2025) On considère la fonction f définie sur \mathbf{R} par

$$f(x) = xe^{-x} + 2x - 1.$$

On admet que la fonction f est deux fois dérivable sur \mathbf{R} .

On appelle \mathcal{C}_f sa courbe représentative dans un repère orthogonal du plan.

On note f' la fonction dérivée de la fonction f et f'' la fonction dérivée seconde de f, c'est-à-dire la fonction dérivée de la fonction f'.

Partie A - Étude de la fonction f

- 1) Déterminer les limites de la fonction f en $-\infty$ et en $+\infty$.
- 2) Pour tout réel x, calculer f'(x).
- **3)** Montrer que pour tout réel *x* :

$$f''(x) = (x-2)e^{-x}$$
.

- **4)** Étudier la convexité de la fonction f.
- 5) Étudier les variations de la fonction f' sur \mathbf{R} , puis dresser son tableau de variations en y faisant apparaître la valeur exacte de l'extremum.

Les limites de la fonction f' aux bornes de l'intervalle de définition ne sont pas attendues.

- 6) En déduire le signe de la fonction f' sur \mathbf{R} , puis justifier que la fonction f est strictement croissante sur \mathbf{R} .
- 7) Justifier qu'il existe un unique réel α tel que $f(\alpha) = 0$. Donner un encadrement de α , au centième près.
- 8) On considère la droite Δ d'équation y=2x-1. Étudier la position relative de la courbe \mathcal{C}_f par rapport à la droite Δ .

Partie B - Calcul d'aire

Sera vu avec le chapitre 10.

Soit n un entier naturel non nul. On considère l'aire du domaine D_n délimité par la courbe \mathcal{C}_f , la droite Δ et les droites d'équations respectives x=1 et x=n. On note

$$I_n = \int_1^n x e^{-x} dx.$$

- 1) À l'aide d'une intégration par parties, exprimer I_n en fonction de n.
- **2) a)** Justifier que l'aire du domaine D_n est I_n .
 - **b)** Calculer la limite de l'aire du domaine D_n quand n tend vers $+\infty$.

Terminale G - 2025/2026 1

TERMINALE G EXERCICES

Correction exercice 1 (Amérique du Nord, J2 Secours 2025):

Partie A - Étude de la fonction f

1) • Déterminons la limite quand x tend vers $-\infty$:

 $\forall x \in \mathbf{R}, \quad f(x) = x(e^{-x} + 2) - 1.$

Avec y = -x, par composition, on a: $\lim_{x \to -\infty} e^{-x} = \lim_{y \to +\infty} e^{y} = +\infty$.

 $\lim e^{-x} + 2 = +\infty.$ Donc, par limite de la somme :

 $\lim_{x \to -\infty} x(e^x + 2) = -\infty.$ Par limite du produit, il vient :

 $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x(e^{-x} + 2) - 1 = -\infty.$ Enfin, par limite de la somme :

• Déterminons la limite quand x tend vers $+\infty$:

D'après la propriété des croissances comparées : $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$.

Par limite de l'inverse : $\lim_{x \to +\infty} \frac{x}{e^x} = 0$ donc $\lim_{x \to +\infty} xe^{-x} = 0$. Par ailleurs, 2 étant positif : $\lim_{x \to +\infty} 2x - 1 = +\infty$.

Par limite de la somme on en déduit : $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} xe^{-x} + 2x - 1 = +\infty$.

2) On a admis que la fonction est dérivable sur \mathbf{R} . f est la somme d'une fonction affine et d'un produit de deux fonctions dérivables sur \mathbf{R} . Pour tout réel x, on a :

$$f'(x) = 1 \times e^{-x} + x \times (-e^{-x}) + 2 = (1-x)e^{-x} + 2.$$

3) On a admis que f' est dérivable :

Pour tout réel x, on a :

$$f''(x) = -1 \times e^{-x} + (1-x) \times (-e^{-x}) + 0 = (-1 - (1-x))e^{-x} = (x-2)e^{-x}.$$

On arrive bien à l'expression annoncée.

4) La fonction exponentielle est à valeurs strictement positives sur **R**, donc f''(x) est du signe de (x-2).

- Sur l'intervalle $]-\infty$; 2], $(x-2) \le 0$, donc f'' est à valeurs négatives et donc f est **concave** sur $]-\infty$; 2].
- Sur l'intervalle $[2; +\infty[, (x-2) \ge 0, \text{donc } f'']$ est à valeurs positives et donc f est **convexe** sur $[2; +\infty[$.
- 5) Sur l'intervalle $]-\infty$; 2], f est concave, donc f' est décroissante.
 - Sur l'intervalle $[2; +\infty[$, f est convexe, donc f' est croissante.

f' atteindra donc un minimum pour x = 2. On a :

$$f'(2) = (1-2)e^{-2} + 2 = 2 - e^{-2}$$
.

On peut donc établir le tableau de variations (sans limites, car non attendues ici) de f'.

x	-∞	2	+0	×
signe de $f''(x)$	_	0	+	
variations de f'		$2 - e^{-2}$		

6) Comme on a -2 < 0, on en déduit, par croissance de la fonction exponentielle : $e^{-2} \le e^{0}$.

$$e^{-2} \le e^0 \implies e^{-2} \le 1$$

 $\implies -e^{-2} \ge -1 \quad \text{car } -1 < 0$
 $\implies 2 - e^{-2} \ge 2 - 1$

$$\implies 2 - e^{-2} \ge 1$$

Le minimum de f' est donc un réel supérieur à 1, donc strictement positif.

On en déduit que f' est donc une fonction à valeurs strictement positives sur **R**, en conséquence, f est effectivement une fonction strictement croissante sur R.

7) f est une fonction **continue** (car dérivable) et **strictement croissante** sur **R**. De plus 0 est une **valeur intermédiaire** entre $\lim f = -\infty$ et $\lim f = +\infty$.

En vertu du corollaire au théorème des valeurs intermédiaires appliqué aux fonctions strictement monotones, on en déduit qu'il existe un unique réel α tel que $f(\alpha) = 0$.

Par exploration à la calculatrice, on peut donner pour α l'encadrement au centième près suivant : 0,37 < α < 0,38.

8) Pour tout x réel, on a :

$$f(x) - (2x - 1) = xe^{-x}$$
.

Comme la fonction exponentielle est à valeurs strictement positives sur \mathbf{R} , on en déduit que cette différence entre l'ordonnée f(x) d'un point sur C_f et celle 2x-1 du point partageant la même abscisse sur Δ est du signe de x.

Sur \mathbb{R}^- , la différence est donc négative, et on en déduit que la courbe C_f est **au-dessous** de la droite Δ .

Sur \mathbb{R}^+ , au contraire, la différence est positive, et donc la courbe C_f est **au-dessus** de la droite Δ .

Partie B - Calcul d'aire

Chapitre 10.

EXERCICES TERMINALE G

♦ BAC.2 (Centres étrangers, J2 2025)

Partie A

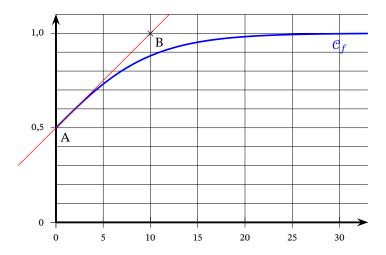
On considère la fonction f définie sur l'intervalle $[0; +\infty[$ par :

$$f(x) = \frac{1}{a + e^{-bx}},$$

où a et b sont deux constantes réelles strictement positives.

On admet que la fonction f est dérivable sur l'intervalle $[0; +\infty[$.

La fonction f admet pour représentation graphique la courbe \mathcal{C}_f ci-dessous :



On considère les points A(0; 0,5) et B(10; 1).

On admet que la droite (AB) est tangente à la courbe \mathcal{C}_f au point A.

- 1) Par lecture graphique, donner une valeur approchée de f(10).
- 2) On admet que $\lim_{x\to +\infty} f(x) = 1$. Donner une interprétation graphique de ce résultat.
- 3) Justifier que a = 1.
- 4) Déterminer le coefficient directeur de la droite (AB).
- **5) a)** Déterminer l'expression de f'(x) en fonction de x et de la constante b.
 - **b)** En déduire la valeur de b.

Partie B

On admet, dans la suite de l'exercice, que la fonction f est définie sur l'intervalle $[0; +\infty[$ par :

$$f(t) = \frac{1}{1 + \mathrm{e}^{-0.2x}}$$

- 1) Déterminer $\lim_{x \to +\infty} f(x)$.
- 2) Étudier les variations de la fonction f sur l'intervalle $[0; +\infty[$.
- 3) Montrer qu'il existe un unique réel α positif tel que $f(\alpha) = 0.97$.
- **4)** À l'aide de la calculatrice, donner un encadrement du réel *a* par deux nombres entiers consécutifs. Interpréter ce résultat dans le contexte de l'énoncé.

Partie C

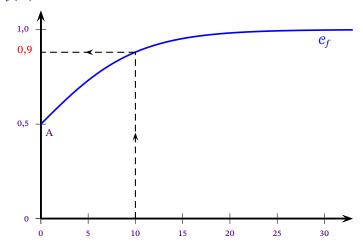
Sera vu avec le chapitre 10.

EXERCICES TERMINALE G

Correction exercice 2 (Centres étrangers, J2 2025) :

Partie A

1) 1970 - 1960 = 10. Donc on lit f(10).



Dans la limite de précision du graphique, $f(10) \approx 0.9$.

2) Si $\lim_{t\to +\infty} f(t)=1$ alors \mathcal{C}_f admet une asymptote horizontale d'équation y=1 au voisinage de $+\infty$.

3)
$$f(0) = \frac{1}{2}$$
 donc $\frac{1}{a+1} = \frac{1}{2} \iff a+1=2 \iff a=1$.

4) Soit m ce coefficient directeur. $m = \frac{y_B - y_A}{x_B - x_A} = \frac{0.5}{10} = 0.05$.

5) a) La fonction f est continue et dérivable sur $[0; +\infty[.f(t)]]$ est de la forme $\frac{1}{u(t)}$, de dérivée $-\frac{u'(t)}{u^2(t)}$ Donc en posant $u(t) = a + e^{-bt}$, $u'(t) = -be^{-bt}$ Donc $\forall t \in [0; +\infty[,f'(t)]] = -\frac{-be^{-bt}}{(1+e^{-bt})^2} = \frac{be^{-bt}}{(1+e^{-bt})^2}$.

b) Le nombre dérivée de f en 0 est égale à la pente de la droite (AB), tangente à C_f au point d'abscisse 0. Donc f'(0) = 0.05 donc $\frac{b}{2^2} = 0.05$ donc $b = 4 \times 0.05 = 0.2$.

Partie B

On admet, dans la suite de l'exercice, que le taux d'équipement en réfrigérateurs est représenté par la fonction f définie sur l'intervalle $[0; +\infty[$ par : $f(t) = \frac{1}{1 + \mathrm{e}^{-0,2t}}$.

1) $\lim_{t\to +\infty} \mathrm{e}^{-0.2t} = 0$ (par composition). Donc $\lim_{t\to +\infty} f(t) = 1$.

2) La fonction f est continue et dérivable sur $[0; +\infty[$, de la forme $\frac{1}{u(t)}$, de dérivée $-\frac{u'(t)}{u^2(t)}$.

Donc en posant $u(t) = 1 + e^{-0.2t}$, $u'(t) = -0.2e^{-0.2t}$, $\forall t \in [0; +\infty[$, $f'(t) = -\frac{-0.2e^{-0.2t}}{(1 + e^{-0.2t})^2}$ soit $f'(t) = \frac{0.2e^{-0.2t}}{(1 + e^{-0.2t})^2}$ $\forall t \in [0; +\infty[$, $0.2e^{-0.2t} > 0$ et $(1 + e^{-0.2t})^2 > 0$ donc f'(t) > 0 donc f est croissante sur $[0; +\infty[$.

3) On a $f(0) = \frac{1}{2}$ et $\lim_{t \to +\infty} f(t) = 1$.

La fonction f est continue strictement croissante sur $[0; +\infty[$ à valeurs dans $\left[\frac{1}{2}; 1\right[$. Or $0.97 \in \left[\frac{1}{2}; 1\right[$, donc d'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0.97 admet une unique solution α dans l'intervalle $[0; +\infty[$.

4) Avec la calculatrice $\alpha \approx 17,4$ donc $\alpha \in]17$; 18[.

Partie C

Chapitre 10.