Corrigé sujet ENS-2009

Question 1.1. Soit $(i,j) \in [\![1,n]\!]^2$. $(L_G L_G^\top)_{i,j} = \sum_{k=1}^m l_{k,i} l_{k,j}$. Si $i \neq j, \ l_{k,i} l_{k,j} = 0$ si la k-ème arête n'est pas $\{i,j\}$ et $l_{k,i} l_{k,j} = -1$ si la k-ème arête n'est pas $\{i,j\}$ et k-ème arete n'est pas arete n'es

k-ème arête est $\{i,j\}$; de plus, $l_{k,i}^2=1$ si la k-ème arête est incidente à i et $l_{k,i}^2=0$ sinon. De ce fait, $(L_GL_G^\top)_{i,i}=d_i$ et $(L_G^tL_G)_{i,j}=-1$ s'il y a une arête entre i et j, $(L_GL_G^\top)_{i,j}=0$ sinon. Par définition, $L_G^tL_G=\Delta_G$.

Question 1.2. Dans ce cas, $L_G L_G^{\top} v = \lambda v$ donc $v^{\top} L_G L_G^{\top} v = \lambda v^{\top} v$ et $v^{\top} v = ||v||^2$, $v^{\top} L_G L_G^{\top} v = (L_G^{\top} v)^{\top} (L_G^{\top} v) = ||L_G^{\top} v||^2$ donc $\lambda = \frac{||L_G^{\top} v||^2}{||v||^2}$.

 $\text{Enfin, } ||v||^2 = \sum_{i=1}^n v_i^2, \text{ pour tout } 1 \leq k \leq m, \text{ si la k-\`eme ar\^ete est } \{i_0, i_1\}, \ i_0 < i_1, \ (L_G^\top v)_k = \sum_{i=1}^n l_{i,k} v_i = v_{i_0} - v_{i_1} \text{ donc } ||L_G^\top v||^2 = v_{i_0} - v_{i_0} - v_{i_0} + v_{i_0} - v_{i_0} + v_{i_0} +$

 $\sum_{\{i_0,i_1\}\in E}(v_{i_0}-v_{i_1})^2. \text{ Ainsi, } \lambda = \frac{\sum\limits_{\{i,j\}}(v_i-v_j)^2}{\sum\limits_{i=1}^n v_i^2}. \text{ La matrice } \Delta_G = L_GL_G^\top \text{ est symétrique. Pour tout } v \in \mathbb{R}^n, \ v^\top(L_GL_G^\top)v = ||L_G^\top v||^2 \geq 0$

donc Δ_G est symétrique positive. Ses valeurs propres sont donc symétriques, réelles et positives.

Question 1.3.

Supposons que $\Delta_G v = 0$. Alors $||L_G^\top v||^2 = 0$ donc $L_G^\top v = 0$. Or, si $k = \{i_0, i_1\}$ et $i_0 < i_1$, $(L_G^\top v)_k = v_{i_0} - v_{i_1}$ donc $v_{i_0} = v_{i_1}$. Par conséquent, si i et j sont dans la même composante connexe de G, $v_i = v_j$. Si G n'a qu'une composante connexe, $v = v_1(1, \cdots, 1)$ donc $\ker(\Delta_G) \subset \operatorname{Vect}(e)$. Réciproquement, $e \in \ker(\Delta_G)$ donc $\ker(\Delta_G) = \operatorname{Vect}(e)$. On a donc $\operatorname{rg}(\Delta_G) = n - \dim(\ker(\Delta_G)) = n - 1$. Si G possède p composantes connexes, si $v \in \ker(\Delta_G)$, pour tout i,j dans une même composante connexe $v_i = v_j$; réciproquement, si $v_i = v_j$ pour tout, j dans une même composante connexe, $v_i = v_j$ si $k = \{i,j\}$ donc $L_G^\top v = 0$ donc $v \in \ker(\Delta_G)$. Ainsi $\dim(\ker(\Delta_G)) = p$ donc $\operatorname{rg}(\Delta_G) = n - p$.

Question 1.4.

Pour tout $1 \le i \le n$, si $i \ne k$, $(L_{G,k}L_{G,k}^{\top})_{i,i} = \sum_{j=1}^{m} (L_{G,k})_{j,i}^2 = d_i$; si k = i, $(L_{G,k}L_{G,k}^{\top})_{i,i} = \sum_{j=1}^{m} (L_{G,k})_{j,i}^2 = 1$; pour tout $1 \le i \ne j \le n$,

 $(L_{G,k}L_{G,k}^{\top})_{i,j} = \sum_{l=1}^{m} (L_{G,k})_{l,i} (L_{G,k})_{l,j}$ qui vaut -1 si $\{i,j\}$ est une arête avec $i \neq k, j \neq k$ et qui vaut 0 si i = k ou j = k. On a donc $L_{G,k}L_{G,k}^{\top} = \Delta_{G,k}$.

Si λ est une valeur propre de $\Delta_{G,k}$ et v un vecteur propre associé, $\lambda = \frac{||L_G^\top v||^2}{||v||^2}$. Soit $v \in \text{Ker}(\Delta_{G,k})$. Alors $L_{G,k}^\top v = 0$. Pour tout $1 \leq j \leq m$, si $j = \{i_0, i_1\}$, si $k \neq i_0$, $k \neq i_1$, $(L_{G,k}^\top)_j = v_{i_0} - v_{i_1}$, si $k = i_0$, $(L_{G,k}^\top v)_j = -v_{i_1}$, si $k = i_1$, $(L_{G,k}^\top v)_j = v_{i_0}$; enfin, si j = m+1, $(L_{G,k}^\top v)_j = v_j$. Comme $L_{G,k}v = 0$, $v_{m+1} = 0$ et, pour tout voisin i_0 ou i_1 de k, $v_{i_0} = v_{i_1} = 0$; donc pour tout $\{i_0, i_1\}$ arête incidente à k, $v_{i_0} = v_{i_1} = 0$. Pour tout arête $\{i_0, i_1\}$ non incidente à k, $v_{i_0} = v_{i_1}$. Par conséquent, pour tout i, j dans une même composante connexe, $v_i = v_j$. Comme $v_k = 0$ et G est connexe, v = 0 donc $\text{Ker}(\Delta_{G,k}) = \{0\}$ donc $\text{rg}(\Delta_{G,k}) = n$.

Question 1.5. Cette famille est la famille des colonnes de $\Delta_{G,k}$ qui a rang n donc cette famille est une famille libre de \mathbb{R}^n .

Question 1.6. La comatrice de A est à coefficients entiers et $\delta = \det(A)$ est entier non nul. $u = \operatorname{Com}(A)a$ est donc à coefficients entiers $(u_i)_{1 \leq i \leq n}$ et $v = A^{-1}a = \frac{1}{\delta}u$ donc, pour tout $1 \leq i \leq n$, $v_i = \frac{u_i}{\delta}$; en écrivant la division euclidienne $u_i = \delta v_i'' + v_i'$, $0 \leq v_i' < \delta$, $v_i = \frac{v_i'}{\delta} + v_i''$.

Question 2.1.

Soit H un sous-groupe de K contenant chaque g_i . Alors, pour tout $(a_1, \dots, a_k) \in \mathbb{Z}^k$, $\sum_{i=1}^k a_i g_i \in H$ donc H contient $\{\sum_{i=1}^k a_i g_i / (a_i)_{1 \le i \le n} \in \mathbb{Z}^n\}$.

Notons $H_0 = \{\sum_{i=1}^k a_i g_i / (a_i)_{1 \le i \le n} \in \mathbb{Z}^n \}$. $(0)_{1 \le i \le n} \in \mathbb{Z}^n$ donc $0 = \sum_{i=1}^n 0 g_i \in H_0$. Soient $(x, y) \in H_0^2$. Il existe $(a_i)_{1 \le i \le n} \in \mathbb{Z}^n$,

 $(b_i)_{1 \leq i \leq n} \in \mathbb{Z}^n$ tels que $x = \sum_{i=1}^n a_i g_i$ et $y = \sum_{i=1}^n b_i g_i$ donc $x - y = \sum_{i=1}^n (a_i - b_i) g_i \in H_0$. H_0 est donc un sous-groupe. C'est bien le plus petit sous-groupe de K contenant les g_i .

Question 2.2.

Soit $j \in [\![1,n]\!]$, $j \neq k$.. Comme $(1, \dots, 1) \in \text{Ker}(\Delta_G)$, $\sum_{i=1}^n \Delta_i = 0$ donc $\Delta_j = \sum_{i \neq j} \Delta_i$; $\langle x_k, \Delta_i / i \neq j \rangle$ contient x_k, Δ_i pour $i \neq j, k$ et Δ_j donc $\langle x_k, \Delta_i / i \neq k \rangle \subset \langle x_k, \Delta_i / i \neq j \rangle \subset$; de même, $\Delta_k = -\sum_{i \neq k} \Delta_i$ donc $\Delta_k \in \langle x_k, \Delta_i / i \neq k \rangle$ donc $\langle x_k, \Delta_i / i \neq k \rangle$ contient

 x_k , Δ_i pour $i \neq j, k$ et Δ_k donc $\langle x_k, \Delta_i / i \neq j \rangle \subset \langle x_k, \Delta_i / i \neq k \rangle$. En conclusion, $\langle x_k, \Delta_i / i \neq j \rangle = \langle x_k, \Delta_i / i \neq k \rangle$, c'est-à-dire que $\langle x_k, \Delta_i / i \neq j \rangle = \Delta(G, k)$.

Question 2.3.

Soit $x \in K$. Alors $x - x = 0 \in H$ donc x est équivalent à x relativement à H. Soit $(x,y) \in K^2$. Supposons que x est équivalent à y relativement à H. Alors $x - y \in H$ donc $y - x = -(x - y) \in H$ donc y est équivalent à x relativement à H. Soit $z \in K$ tel que y est équivalent à x relativement à x relativem

Question 2.4.

Commençons par prouver que cette opération est bien définie : soient \overline{x} et \overline{y} deux classes. Soient x, x' deux représentants de \overline{x} et y, y'

deux représentants de \overline{y} . Alors (x+y)-(x'+y')=(x-x')+(y-y') donc $(x+y)-(x'+y')\in H$ donc $\overline{x+y}=\overline{x'+y'}$. Ceci assure que $\overline{x+y}$ ne dépend pas des choix x, y effectués et de ce fait que l'opération d'addition sur K/H est bien définie.

Soient $(\overline{x},\overline{y}) \in (K/H)^2$. Alors $\overline{x}+\overline{y}=\overline{x+y}=\overline{y+x}=\overline{y}+\overline{x}$ donc l'addition est commutative sur K/H; si $\overline{z} \in K/H$, $(\overline{x}+\overline{y})+\overline{z}=K/H$ $\overline{x+y}+\overline{z}=\overline{(x+y)+z}=\overline{x+(y+z)}=\overline{x}+\overline{y+z}=\overline{x}+(\overline{y}+\overline{z}) \text{ donc l'addition est associative. } \overline{x}+\overline{0}=\overline{x}+\overline{0}=\overline{x} \text{ donc } \overline{0} \text{ est neutre}$ pour l'addition. Enfin, $\overline{x} + \overline{-x} = \overline{x} - \overline{x} = \overline{0}$ donc \overline{x} est inversible dans K/H. En conclusion, K/H est un groupe abélien.

Question 2.5.

Soit A la matrice de passage de la base canonique à $(x_k, \Delta_i)_{i \neq k}$. A est à coefficients entiers et, comme cette famille est libre, A est inversible. Soit $a \in \mathbb{Z}^n$. Il existe $v = (v_i)_{1 \le i \le n} \in \mathbb{R}^n$ tel que Av = a. D'après la question 1.6., il existe δ (qui est $\det(A)$ donc indépendant de a) tel que $\overline{v} = \overline{v'}$ où $v'(\frac{v'_i}{\delta})_{1 \leq i \leq n}$ tel que, pour tout $1 \leq i \leq n, 0 \leq v'_i \leq \delta - 1$. Tout élément de C(G,k) admet donc un représentant dans $[0, \delta - 1]^n$ qui est un ensemble fini. De ce fait, C(G, k) est fini.

Soit $\overline{x} \in K/H$. Soient $(x, x') \in K^2$ des représentants de \overline{x} . Alors $x - x' \in H$ donc $\phi(x - x') \in \phi(H)$ donc $\phi(x) - \phi(x') \in \phi(H)$ donc $\phi(x)$ et $\phi(x')$ sont égaux modulo $\phi(H)$. On peut donc définir $\overline{\phi}: K/H \to K'/\phi(H), \overline{x} \mapsto \overline{\phi(x)}$. Pour tout $(\overline{x}, \overline{y}) \in (K/H)^2$, $\overline{\phi}(\overline{x}+\overline{y}) = \overline{\phi}(\overline{x+y}) = \overline{\phi(x+y)} = \overline{\phi(x)} + \overline{\phi(y)} = \overline{\phi(x)} + \overline{\phi(y)} = \overline{\phi(\overline{x})} + \overline{\phi(\overline{y})} \text{ donc } \overline{\phi} \text{ est un morphisme de groupe. Soit } \overline{x} \in \text{Ker}(\overline{\phi}). \text{ Alors } \overline{\phi}(\overline{x}) = \overline{\phi(x+y)} = \overline{\phi(x)} + \overline{\phi(y)} = \overline{\phi(x)} + \overline{\phi(x)} = \overline{\phi(x$ $\overline{\phi(\overline{x})} = \overline{0_{K'}} \text{ donc } \phi(x) = \overline{0_{K'}} \text{ donc } \phi(x) - 0_{K'} \in \phi(H) \text{ donc il existe } h \in H \text{ tel que } \phi(x) - 0_K' = \phi(h) \text{ donc } \phi(x) = \phi(h) \text{ donc, } \phi \text{ étant injectif, } x = h \text{ donc } x \in H \text{ donc } \overline{x} = \overline{0_K} \text{ donc } \overline{\phi} \text{ est injectif. Soit } \overline{y} \in K'/\phi(H). \text{ Par surjectivité de } \phi, \text{ il existe } x \in K \text{ tel que } y = \phi(x)$ donc $\overline{y} = \overline{\phi(x)} = \overline{\phi(\overline{x})}$ donc $\overline{\phi}$ est surjectif. Ainsi, $\overline{\phi}$ est donc un isomorphisme.

Question 2.7.

Soit $x = \sum_{i=1}^n \lambda_i x_i \in \mathbb{Z}^n$. Posons $\phi(x) = \sum_{i=1}^n \lambda_i y_i$. Pour tout $i \in [1, n]$, $y_i \in \mathbb{Z}^n$ donc $\phi : \mathbb{Z}^n \to \mathbb{Z}^n$. Si $y = \sum_{i=1}^n \mu_i x_i$, alors $\frac{i=1}{\phi(x+y)} = \phi(\sum_{i=1}^{n} (\lambda_i + \mu_i) x_i) = \sum_{i=1}^{n} (\lambda_i + \mu_i) y_i = \sum_{i=1}^{n} \lambda_i y_i + \sum_{i=1}^{n} \mu_i y_i = \phi(x) + \phi(y) \text{ donc } \phi \text{ est un morphisme.}$ De plus, $\phi(-x_k) = x_l$; $\phi(-x_l - x_k) = -x_l + x_k + x_l = x_k$ et, pour tout $i \neq k, l$, $\phi(-x_l - x_k + x_i) = x_k + x_i - x_k = x_i$. Par conséquent, pour tout $1 \leq i \leq n$, $x_i \in \phi(\mathbb{Z}^n)$ donc $\langle x_i \rangle_{1 \leq i \leq n} \subset \phi(\mathbb{Z}^n)$ donc $\mathbb{Z}^n = \phi(\mathbb{Z}^n)$. Supposons que $\phi(x) = 0$. Alors $\sum_{i=1}^{n} \lambda_i y_i = 0$ donc $\sum_{i\neq k} \lambda_i(x_i-x_k) - \lambda_k x_l = 0 \text{ donc } (\lambda_l-\lambda_k) x_l - (\sum_{i\neq k} \lambda_i) x_k + \sum_{i\neq k,l} \lambda_i x_i = 0 \text{ donc } \lambda_l-\lambda_k = 0, \sum_{i\neq k} \lambda_i = 0, \text{ pour tout } i\neq k,l, \ \lambda_i = 0, \\ \lambda_k = \lambda_l \text{ et } \lambda_l = 0 \text{ donc, pour tout } 1 \leq i \leq n, \ \lambda_i = 0. \text{ Ainsi, } \phi \text{ est injective. } \phi \text{ est donc un isomorphisme.} \\ \text{Enfin, } \phi(x_k) = -x_l, \text{ pour tout } i\neq k, \ \phi(\Delta_i) = \phi(d_i x_i + \sum_{j\neq i} e_{i,j} x_j) = d_i(x_i-x_k) + \sum_{j\neq i,k} e_{i,j}(x_j-x_k) - e_{i,k} x_l = d_i x_i + \sum_{j\neq i,k} e_{i,j} x_j + (-d_i - \sum_{j\neq i,k} e_{i,j}) x_k - e_{i,k} x_l; \text{ or } d_i = -\sum_{j\neq i,k} e_{i,j} \text{ donc } -d_i - \sum_{j\neq i,k} e_{i,k} \text{ donc } \phi(\Delta_i) = d_i x_i + \sum_{j\neq i} e_{i,j} x_i - e_{i,k} x_l = \Delta_i'. \\ H \text{ est engendré par } x_k \text{ et } \Delta_i, \ i\neq k \text{ donc } \phi(H) \text{ est engendré par } \phi(x_k) = -x_l \text{ et } \phi(\Delta_i) = \Delta_i', \ i\neq k. \ \phi(H) \text{ est aussi engendré par } x_l \text{ et } \Delta_i' + e_{i,k} x_l = \Delta_i, \ i\neq k; \ \text{d'après la question } 2.2., \ \phi(H) = \Delta(G, l). \ \text{Ainsi, } \mathbb{Z}^n/\Delta(G, k) \text{ est isomorphisme à } \mathbb{Z}^n/\Delta(G, l) \text{ via } \phi. \\ \text{Ouestion } 3.1$

Si $u \to v$, $v - u = -\Delta_i \in \Delta(G, n)$ donc u et v ont même image dans C(G, n). Par récurrence sur p, si $u \stackrel{*}{\to} v$ et $u^0 = u$, $u^p = v$, $u^i \to u^{i+1}$, pour tout $0 \le i \le p-1$, u^i et u^{i+1} ont même image dans C(G,n) donc $u^0 = u$ et $u^p = v$ ont même image dans C(G,n). Question 3.2.

On peut considérer l'ordre lexico-graphique sur \mathbb{Z}^n qui est une relation totale. C(G,n) étant fini, on peut considérer v une configuration positive maximisant $\mu(v)$, pour tous les v tels que $u \stackrel{*}{\to} v$. v est positive; si v n'est pas stable, il existe i à distance minimal j du puits tel que $d_i \leq v_i$. On pose $v' = v - \Delta_i$. v' est positive et il existe un voisin de k à distance j-1 du puits; on a $v'_k = v_k + 1 > v_k$ dont $\mu(v) < \mu(v')$ pour l'ordre lexico-graphique ce qui est absurde. Ainsi, v est stable.

Supposons que v est stable. Alors $v'=v+\Delta_i$ vérifie $v'_i=v_i+d_i\geq d_i$; $v''=v-\Delta_i$ vérifie $v''_i=v_i-d_i<0$. Ainsi, v' et v'' ne sont pas stables. Supposons que i et j sont voisins. Alors $v - \Delta_i + \Delta_j$ a élément d'indice i $v_i - d_i - 1 < 0$. On montre ainsi que, pour toute somme non vide indexée par I $v + \sum_{i \in I} \pm \Delta_i$ n'est pas stable. Ceci prouve qu'il n'y a qu'un élément stable v tel que $u \stackrel{*}{\to} v$.

Question 3.3.

(a) Supposons que $u \stackrel{*}{\to} u'$. Notons (u^i) une suite telle que $u^0 = u$, $u^p = u'$ et $u^i \stackrel{*}{\to} u^{i+1}$ pour tout $0 \le i < p$. De même, $v \stackrel{*}{\to} v'$ donc on peut trouver (v^i) telle que $v^0 = v$, $v^q = v'$, $v^i \stackrel{*}{\rightarrow} v^{i+1}$.

Posons $w^0 = u + v$, $v^{p+q} = u' + v'$; pour tout $0 \le i < p$, $w^i = u^i + v$ donc, comme $u^i \stackrel{*}{\to} u^{i+1}$ il existe j tel que $u^{i+1} = u^i - \Delta_j$ $\mathrm{donc}\ w^i - \Delta_j = u^i + v - \Delta_j = u^{i+1} + v = w^{i+1}; \ \mathrm{pour\ tout}\ p \leq i < p+q, \ \mathrm{on\ pose}\ w^i = u' + v^{i-p}; \ \mathrm{on\ a\ encore}\ w^i \overset{*}{\to} w^{i+1}. \ \mathrm{Ainsi},$

(b) Considérons l'ensemble des i tel que $v_i=0$. Parmi ces éléments, l'un d'entre eux est voisin d'un élément j tel que $v_j>0$ (sinon v=0). Il existe k tel que $kv_j \ge d_j+1$. Alors $w^1=kv-\Delta_j$ a élément d'indice j $kv_j-d_j \ge 1$ et élément d'indice i 1. Ainsi, l'élément $w^1=kv-\Delta_j$ est toujours positif, non nul et a un nombre de coordonnées nulles strictement inférieur à celui de v et vérifie $kv\to w^1$. Par récurrence, il existe k' tel que $k'w^1 \stackrel{*}{\to} w^p$ et $w_i^p > 0$ pour tout $1 \le i \le n-1$ donc $kk'v \to k'w^1 \stackrel{*}{\to} w^p$ ce qui prouve le résultat.

(c) Supposons qu'il existe u' positive telle que $u' + \delta \stackrel{*}{\to} u$. Posons $v = \delta - u + u'$. Comme $\delta - u$ est positive et u' est positive, v est positive et $u+v=\delta+u'$ donc $u+v\stackrel{*}{\to}u$. Réciproquement, supposons que u est stable. Il existe v positive telle que $u+v\stackrel{*}{\to}u$; alors $u + kv = u + v + (k-1)v \xrightarrow{*} u + (k-1)v$ donc, par récurrence, $u + kv \xrightarrow{*} v$. Il existe $k \in \mathbb{N}$ tel que $u - \delta + kv \ge 0$ d'après le point (a). Alors, en posant $u' = u - \delta + kv$, u' est positive et $u' + \delta = (u - \delta + kv) + \delta = u + kv \stackrel{*}{\rightarrow} u$.

Question 3.4. $u \stackrel{*}{\Rightarrow} v$ si et seulement si, il existe $(a_i)_{1 \leq i \leq n} \in \mathbb{N}^n$ tel que $v = u - \sum_{i=1}^n a_i \Delta_i$. Supposons que $u - v \in \langle \Delta_1, \cdots, \Delta_n \rangle$. Il

existe $(a_i)_{1 \leq i \leq n} \in \mathbb{N}^n$ et $(b_i)_{1 \leq i \leq n} \in \mathbb{N}^n$ tel que $v - u = \sum_{i=1}^n a_i \Delta_i - \sum_{i=1}^n b_i \Delta_i$. Posons $w = v + \sum_{i=1}^n b_i \Delta_i$. Alors $v = w - \sum_{i=1}^n b_i \Delta_i$ donc $w \stackrel{*}{\to} v$; de plus, $u = v - \sum_{i=1}^{n} a_i \Delta_i + \sum_{i=1}^{n} b_i \Delta_i = w - \sum_{i=1}^{n} a_i \Delta_i$ donc $w \stackrel{*}{\to} u$.

L'élément d'indice i de ϵ est $\epsilon_i = 2d_i - (\delta \oplus \delta)_i$. Comme $\delta \oplus \delta$ est stable, $(\delta \oplus \delta)_i \leq d_i - 1$, $\epsilon_i \geq d_i + 1$ donc ϵ est positive.

On a $\delta + \delta \stackrel{*}{\to} \delta \oplus \delta$. En outre, par stabilité de $\delta \oplus \delta$, $\delta - \delta \oplus \delta$ est positive et $\delta + \delta \stackrel{*}{\to} \delta \oplus \delta$ donc $\delta + \delta + (\delta - \delta \oplus \delta) \stackrel{*}{\to} \delta \oplus \delta + \delta - \delta \oplus \delta = \delta$ donc $\delta + \epsilon \stackrel{*}{\rightarrow} \delta$.

Question 3.6.

L'énoncé a oublié l'hypothèse "u est stable".

Supposons que $u + \epsilon \stackrel{*}{\to} u$. Par définition, ϵ étant positive, u est récurrente.

Réciproquement, supposons que u est récurrente. Alors, il existe u' positive telle que $u' + \delta \stackrel{*}{\to} u$. On a alors $u' + \delta + \epsilon = (u' + \delta) + \epsilon \stackrel{*}{\to} u + \epsilon$ ainsi que $u' + \delta + \epsilon = u' + (\delta + \epsilon) \stackrel{*}{\to} u' + \delta \stackrel{*}{\to} u$. Or u est stable donc, par unicité de la configuration stable, $u + \epsilon \stackrel{*}{\to} u$.

Question 3.7.

Soit u une configuration. $\epsilon \geq \delta$ donc ϵ est strictement positive donc il existe $k \in \mathbb{N}$ tel que $k\epsilon$ est supérieure à $\delta - u$ donc $u - \delta + k\epsilon$ est positive; $u + k\epsilon = \delta + (u - \delta) + k\epsilon$. Ainsi, la configuration stable v telle que $u + k\epsilon \stackrel{*}{\to} v$ est récurrente d'après la question 3.3. Enfin $u + k\epsilon - v \in \langle \Delta_1, \dots, \Delta_n \rangle$ et $\epsilon \in \langle \Delta_1, \dots, \Delta_n \rangle$ donc $u - v \in \langle \Delta_1, \dots, \Delta_n \rangle$.

Supposons qu'il existe deux configuration v et v' récurrentes telles que $u-v\in \langle \Delta_1,\cdots,\Delta_n\rangle$ et $u-v'\in \langle \Delta_1,\cdots,\Delta_n\rangle$. Alors $v-v'=u-v'-(u-v)\in\langle\Delta_1,\cdots,\Delta_n\rangle$. Il existe donc w une configuration telle que $w\stackrel{*}{\Rightarrow}v$ et $w\stackrel{*}{\Rightarrow}v'$; soit $k\in\mathbb{N}$ tel que $w + k\epsilon$ soit positive; alors $w + k\epsilon \stackrel{*}{=} v + k\epsilon$ et $w + k\epsilon \stackrel{*}{=} v' + k\epsilon$. Par récurrence de $v, v', v + k\epsilon \stackrel{*}{=} v$ et $v' + k\epsilon \stackrel{*}{=} v'$. AInsi, $w + k\epsilon \stackrel{*}{=} v$ et $w + k\epsilon \stackrel{*}{\to} v'$. Par unicité de la configuration stable associée à une configuration positive, v = v'.

Question 3.8.

Soient u et v des configurations récurrentes. Alors $v + \epsilon \stackrel{*}{\to} v$ donc $u + v + \epsilon \stackrel{*}{\to} u + v$; comme $u + v \stackrel{*}{\to} u \oplus v$, $u + v + \epsilon \stackrel{*}{\to} u \oplus v$. En outre, $u + v \stackrel{*}{\to} u \oplus v$ donc $u + v + \epsilon \stackrel{*}{\to} u \oplus v + \epsilon$. Par unicité de la configuration stable, $u \oplus v + \epsilon \stackrel{*}{\to} u \oplus v$. $u \oplus v$ est donc récurrente. L'opération \oplus sur R(G) est donc une loi interne.

Soient (u, v, w) des configurations récurrentes. $(u \oplus v) + w - (u \oplus v) \oplus w \in \langle \Delta_1, \cdots, \Delta_n \rangle$; $u + v - u \oplus v \in \langle \Delta_1, \cdots, \Delta_n \rangle$ donc $(u+v)+w-(u\oplus v+w)\in \langle \Delta_1, \cdots, \Delta_n \rangle$ donc $(u+v)+w-(u\oplus v)\oplus w \in \langle \Delta_1, \cdots, \Delta_n \rangle$; de même, $u+(v+w)-u\oplus (v\oplus w)\in \langle \Delta_1, \cdots, \Delta_n \rangle$. Par unicité de la configuration récurrente, $u \oplus (v \oplus w) = (u \oplus v) \oplus w$. \oplus est associative.

 $u+v-u\oplus v\in \langle \Delta_1,\cdots,\Delta_n\rangle$ et $v+u-v\oplus u\in \langle \Delta_1,\cdots,\Delta_n\rangle$ et u+v=v+u donc, par unicité de la configuration récurrente, $v \oplus u = u \oplus v$ donc \oplus est commutative.

Soit ϵ' la configuration récurrente telle que $\epsilon - \epsilon' \in \langle \Delta_1, \dots, \Delta_n \rangle$. $u \oplus \epsilon'$ est récurrente; $u + \epsilon' \xrightarrow{*} u \oplus \epsilon'$ donc $u + \epsilon' - u \oplus \epsilon' \langle \Delta_1, \dots, \Delta_n \rangle$. Comme $\epsilon' \in \langle \Delta_1, \dots, \Delta_n \rangle$, $u - u \oplus \epsilon' \in \langle \Delta_1, \dots, \Delta_n \rangle$. u et $u \oplus$ sont récurrentes donc, par unicité de la configuration récurrente, $u = u \oplus \epsilon$. ϵ est donc neutre.

Soit u' l'unique configuration récurrente telle que $-u-u'\in \langle \Delta_1,\cdots,\Delta_n\rangle$. Alors $u+u'-u\oplus u'\in \langle \Delta_1,\cdots,\Delta_n\rangle$ donc $u\oplus u'=0$ $-(u+u'-u\oplus u')+u+u'\in \langle \Delta_1,\cdots,\Delta_n\rangle$. $\epsilon\in \langle \Delta_1,\cdots,\Delta_n \text{ donc } u\oplus u'-\epsilon\in \langle \Delta_1,\cdots,\Delta_n\rangle$. Par unicité de la configuration récurrente, $u \oplus u' = \epsilon'$. u admet donc un opposé.

R(G) est donc un groupe pour \oplus .

 $d_{i} = \operatorname{card}\{j \in X \, / \, \{i, j\} \in E\} \, \operatorname{donc} \, \sum_{i=1}^{n} d_{i} = \operatorname{card} \, \bigcup_{i=1}^{n} \{j \, / \, \{i, j\} \in E\} = \operatorname{card} \, \bigcup_{i=1}^{n} \{(i, j) \, / \, \{i, j\} \in E\} = \operatorname{card}\{(x, y) \, / \, \{x, y\} \in E\}. \, \operatorname{Or} \, \{x, y\} = \{y, x\} \, \operatorname{donc} \, \operatorname{card}\{(x, y) \, / \, \{x, y\} \in E\} = 2 \operatorname{card}(E) = 2m. \, \operatorname{Ainsi}, \, \sum_{i=1}^{n} d_{i} = 2m. \, \operatorname{Or}, \, \operatorname{si} \, u \, \operatorname{est \, stable}, \, \operatorname{pour \, tout} \, 1 \leq i \leq n-1,$ $u_i < d_i$ donc $\sum_{i=1}^{n-1} u_i < \sum_{i=1}^{n} d_i = 2m$. Le nombre de grain hors puits est donc majoré par 2m.

Supposons qu'une configuration u mène à la configuration stable v. Il existe une suite $u^0 = u$, $u^i \to u^{i+1}$, $u^p = v$ et, pour tout i, $u^{i+1} = u^i - \Delta_j$ pour un certain j donc $v = u - \sum_{j=1}^{n-1} a_j \Delta_j$ où a_j est le nombre d'éboulements du sommets j. Ainsi, la suite d'éboulements du sommets j.

ments contient a_j fois l'éboulement du sommet j. Comme $(\Delta_1, \dots, \Delta_{n-1})$ est libre, les éléments a_j tels que $u-v=\sum_{i=1}^{n-1}a_j\Delta_j$ sont uniques donc le nombre d'éboulements du sommet j est unique, pour tout $1 \le j \le n-1$ donc, à l'ordre des éboulements près, la suite d'éboulements est unique.

Question 4.3.

Lors de l'éboulement d'un sommet à un distance i, ce sommet ayant un voisin à distance i-1, la quantité $\mu_{>i}$ diminue d'au moins 1. Lorsque $\mu_{\geq i} < \max_{j \in S_i} d_j > \mu_i$, l'étape i est terminée. Il y a donc au plus $\mu_{\geq i}$ passage à l'étape a.

Lors de l'étape b, il se produit au plus $S_{>i}$. Chaque sommet ne peut s'ébouler qu'une fois lors de cette étape (car il faudra que tous ses voisins s'éboulent à nouveau).

Il y a donc au plus $(1+|S_{>i}|)\mu_{\geq i}$ éboulements à l'étape i.

Au total, il y a $\sum_{i=1}^{n} (1+|S_{>i}|)\mu_{\geq i}$ éboulements; $1+|S_{>i}| \leq |S|=n$; $\mu_{\geq i} \leq p$ donc il y a au plus lnp éboulements. Question 4.4.

 ϵ est majoré par 2δ . Le nombre de grains de 2δ est $\sum_{i=1}^{n}2d_{i}=4m$. u est stable donc possède au plus $\sum_{i=1}^{n}(d_{i}-1)\leq 2m$ grains.Le nombre

de grains de $u + \epsilon$ est donc majoré par 6m. Ainsi, on aura au plus 6mln éboulements pour le test $u + \epsilon \stackrel{*}{\longrightarrow} u$.

Pour u et v récurrentes, le nombre de grains de u+v sera au plus de 4m donc le calcul de $u \oplus v$ prendra au plus 4mln éboulements.

Question 4.5.

Supposons que $u + \beta \stackrel{*}{\to} u$. Alors, β étant positive, u est récurrente.

Réciproquement, supposons que u est récurrente. u est récurrente, $u+\beta-u\in\langle\Delta_1,\cdots,\Delta_n\rangle$ donc u est l'unique configuration récurrente associée à $u + \beta$. On a donc $u = u \oplus \beta$ donc $u + \beta \stackrel{*}{\to} u$.

$$\beta = \sum\limits_{i=1}^{n-1} \Delta_i$$
 donc $u+\beta = u+\sum\limits_{i=1}^{n-1} \Delta_i$ donc chaque sommet ne peut s'ébouler qu'une seule fois.

D'après ce que l'on vient de montrer, pour calculer la configuration récurrente associée à $u + \beta$, il y a au plus n - 1 éboulements. u est récurrente si et seulement si la configuration récurrente associée à $u + \beta$ est u ce qui demande donc n - 1 éboulements au plus.

Question 4.6.

Comme déjà vu, le potentiel d'une configuration augment à chaque éboulement et est majoré par celui de la configuration stable. Il ne peut donc y avoir un nombre infini d'éboulements. La boucle se termine nécessairement.

D'après la question 4.5., chaque sommet n'est éboulé qu'une seul fois à partir de $u+\beta$. Ainsi, chaque sommet ne peut être instable qu'une seul fois. Il ne peut appartenir qu'à un seul ensemble R_i . De plus, chaque sommet est éboulé exactement une fois donc appartient à l'un des R_i . Les R_i forment donc une partition de X. De plus, avant l'éboulement de $k \beta n R_i$, k reçoit un grain de chacun de ses sommets appartenant à R_{i-1} donc k reçoit au moins $\operatorname{card}(V_k \cap R_{i-1})$ grains. On a donc $u_k^{(i)} = u_k^{(i-1)} + \operatorname{card}(R_{i-1} \cap V_k)$ et $u_k^{(i-1)} < d_k$, $u_k^{(i)} \ge d_k$ donc $u_k^{(i)} - d_k = u_k^{(i-1)} + \operatorname{card}(R_{i-1} \cap V_k) - d_k \le \operatorname{card}(R_{i-1} \cap V_k) - 1$. Le nombre l renvoyé par "select $(V_k \cap R_{i-1}, u_k^{(i)} - d_k)$ " est un vrai nombre.

Question 4.7.

Pour tout $i \ge 0$, tout sommet de R_i est relié à un sommet de R_{i-1} par une arête de A. R_{-1} est le puits. Par récurrence, tout sommet est donc relié au puits. T est donc connexe.

Tout arête de A relie un sommet de R_i et un sommet de R_{i-1} . De plus, tout sommet de R_i est relié à au plus un sommet de R_{i-1} . S'il existe un cycle dans T, soit un sommet de R_i avec i maximal. Alors ce sommet est relié à deux sommets de R_j , $j \le i$, ce qui est absurde d'après ce qui précède. Ainsi, T est sans cycle. C'est donc un arbre.

Question 4.8.

Supposons que $u \neq v$. Notons R_i , A_i , $u^{(i)}$ les éléments définissant l'arbre construit à partir de u, R'_i , A'_i , $v^{(i)}$ ceux pour v. Soit i minimal tel qu'il existe $k \in R_i$ tel que $u_k \neq v_k$. Les éboulements jusqu'à la construction de $u^{(i)}$ étaient donc les mêmes pour u et v. Si $v_k^{(i)} < d_k$, $k \notin R'_i$ donc $R_i \neq R'_i$. Si $k \in R'_i$, $u_k^{(i)} \neq v_k^{(i)}$ donc $u_k^{(i)} - d_k \neq v_k^{(i)} - d_k$ donc $A_i \neq A'_i$. On a donc $T \neq T'$, si $A = \bigcup A_i$, $A' = \bigcup A'_i$, T = (X, A), T' = (X, A').

Question 4.9.

Pour $i \ge 0$, pour tout $k \in R_i$, on pose $u_k = d_k + l_k - \sum_{j < i} \operatorname{card}(V_k \cap R_j)$ où l_k est l'entier tel que l'arête $\{k, l\}$ liant k à un sommet de R_{i-1} est la l_k -ème arête de $V_k \cap R_{i-1}$. u est positive (car $d_k - \sum_{j < i} \operatorname{card}(V_k \cap R_j) \ge 0$ et $l_k \ge 0$), stable (car $l_k \le \operatorname{card}(V_k \cap R_{i-1}) - 1$ donc $u_k \le d_k - 1$) donc récurrente et, par construction, l'arbre associé à u est T (on peut vérifier que, pour chaque i, les ensembles R'_i , A'_i construits à partir de u sont bien R_i , A_i).

Question 4.10.

D'après la question 4.8., l'application "algorithme thermique" qui à une configuration récurrente associe un arbre couvrant est injective. D'après la question 4.9., cette application est surjective. Elle est donc bijective. Il y a donc une bijection entre configurations récurrentes et arbres couvrants donc le nombre de configurations récurrentes est le nombre d'arbres couvrants.