2025-2026

Semaine 8 : du 17 novembre au 21 novembre

Sauf mention contraire, tout est à savoir.

Révisions de sup sur les polynômes

- Racine carrée d'un nombre complexe, équation du second degré;
- Racines n-ème de l'unité et d'un nombre complexe, somme des racines n-ème de l'unité;
- Racines multiples, carctérisation par la divisibilité et la dérivée;
- \bullet Polynômes scindés, relations coefficients/racines, d'Alembert-Gauss, tout polynôme de $\mathbb C$ est scindé ;
- Factorisation à l'aide des racines, majoration du nombre de racines, polynômes irreductibles, factorisation dans \mathbb{R} et \mathbb{C} .

Réduction des endomorphismes et des matrices carrées

 \mathbb{K} est un sous-corps de \mathbb{C} .

Éléments propres et polynôme caractéristique

- Droite stable, valeur propre, vecteur propre, sous-espace propre, spectre d'une matrice carrée ou d'un endomorphisme;
- Si u et v commutent, alors v laisse stable les sous-espaces propres de u;
- Les sous-espaces propres sont en somme directe;
- Polynôme caractéristique $\chi_A(X) = \det(XI_n A)$, $\chi_A(X) = X^n tr(A)X^{n-1} + ... + (-1)^n \det(A)$, les valeurs propres sont les racine du polynôme caractéristique, expression de la trace et du déterminant en fonction des valeurs propres si le polynôme caractéristique est scindé;
- Transposition au cas des endomorphisme;
- Thérorème de Cayley-Hamilton (admis);
- Multiplicité d'une valeur propre, $\forall \lambda \in Sp(A), \dim(E_{\lambda}(A)) \leq m_{\lambda}$;
- Majoration du nombre des valeurs propres comptées avec multiplicité;
- Polynôme caractéristique d'un endomorphisme induit.

Diagonalisation en dimension finie

- Endomorphisme diagonalisable, matrice diagonalisable, exemple des projecteurs et des symétries :
- Un endomorphisme $u \in \mathcal{L}(E)$ est diagonalisable si et seulement si son polynôme caractéristique est scindé sur \mathbb{K} et si, pour toute valeur propre, la dimension du sous-espace propre associé est égale à sa multiplicité si et seulement si $\sum_{\lambda \in Sp(u)} \dim(E_{\lambda}(u)) = \dim(E)$;
- Transposition des propriétés précédentes aux matrices;
- Un endomorphisme ou matrice admettant n valeurs propres distinctes est diagonalisable;
- Calcul des puissances d'une matrice diagonalisable.
- Lien entre diagonalisation et polynôme annulateur ou minimal scindé à racines simples.
- Si u est diagonsalisable, tout endomorphisme induit l'est.
- Théorème spectral (admis pour le moment).

Trigonalisation

• Endomorphisme et matrice trigonalisable;

- Un endomorphisme ou une matrice est trigonalisable si et seulement si son polynôme caractéristique ou minimal est scindé sur K si et seulement on peut trouver un polynôme annulateur scindé sur K (aucune technique générale de trigonalisation est au programme, une trigonalisation doit être guidée);
- Toute matrice de $\mathcal{M}_n(\mathbb{C})$ est trigonalisable tout comme tout endomorphisme d'une \mathbb{C} -espace vectoriel de dimension finie.
- Une matrice ou un endomorphisme est nilpotent si et seulement s'il est trigonalisable avec pour seule valeur propre 0.

Sous-espaces caractéristiques

- Définition; somme directe des sous-espaces caractéristiques, dimension des sous-espaces caractéristiques;
- Si le polynôme minimal μ_u de u est scindé sur \mathbb{K} , alors il existe des sous-espaces vectoriels $E_1, ..., E_p$ de E, stables par u, tels que $E = \bigoplus_{i=1}^p E_i$, tels que si on note u_i l'endomorphisme induit par u sur E_i , alors $u_i = \lambda_i Id_{E_i} + n_i$, avec n_i un endomorphisme nilpotent de E_i et λ_i dans \mathbb{K} .
- Si le polynôme minimal μ_A de A est scindé sur \mathbb{K} , alors A est semblable à une matrice de la forme $\begin{pmatrix} \lambda_1 I_{n_1} + N_1 & (0) \\ & \ddots & \\ (0) & \lambda_p I_{n_p} + N_p \end{pmatrix}, \text{ avec } \lambda_1, ... \lambda_p \text{ dans } \mathbb{K} \text{ et } N_1, ..., N_p \text{ des matrices nilpotentes.}$

BANQUE CCINP

1, 35, 61, 88, 34, 37