2025-2026

Semaine 10 : du 1 au 5 décembre

Sauf mention contraire, tout est à savoir.

Topologie

Parties compactes

- Définition.
- Une suite d'un compact CV ssi elle n'a qu'une seule valeur d'adhérence.
- Compact implique fermé et borné, un fermé d'un compact est compact.
- Un produit cartésien fini de compacts est compact.
- L'image d'un compact par une application continue est compact, théorème de la borne atteinte, théorème de Heine.
- En dimension finie, les compacts sont les fermés bornés.
- En dimension finie, toute suite borné admet une sous-suite convergente et elle converge ssi elle n'a qu'une seule valeur d'adhérence.
- ullet Tout sous-ev F de dimension finie de E est fermé dans E.

Parties connexes par arcs

- Définition d'un chemin. Être relié par un chemin est une relation d'équivalence.
- Partie connexe par arcs, composantes connexes par arcs.
- Une partie étoilé ou convexe est connexe par arcs.
- Parties connexes par arcs de \mathbb{R} .
- Image d'une partie connexe par arcs par une application continue, TVI.

Suites de fonctions

 (f_n) est une suite de fonctions définie sur une partie A d'un EVN à valeurs dans \mathbb{R} ou \mathbb{C} .

- Convergence simple (CVS), convergence uniforme (CVU), la CVU implique la CVS.
- Continuité et limite d'une suite de fonctions qui CVU, adaptation sur tout voisinage de A ou sur segment inclus dans I, si A = I, un intervalle de \mathbb{R} . Théorème de la double limite.
- Approximation uniforme des fonctions continues par morceaux par des fonctions en escalier. Théorème d'approximation uniforme de Weierstrass.
- Théorème de convergence dominé; si (f_n) CVU sur le segment [a, b] vers f, alors $\lim_a \int_a^b f$; primitivation d'une suite de fonction CVU.
- $\widetilde{\text{Si}}(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions de classe \mathcal{C}^1 sur I qui converge simplement vers f sur I telle que $(f'_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction h sur I. Alors f est de classe \mathcal{C}^1 sur I et : f' = h., adaptation au cas où (f'_n) CVU sur tout segment de I, extension aux fonctions de classe \mathcal{C}^k et \mathcal{C}^{∞} .

BANQUE CCINP

9, 10, 11, 12, 13, 25