Semaine 11 : du 8 décembre au 12 décembre

Sauf mention contraire, tout est à savoir.

Suites et séries de fonctions

 (f_n) est une suite de fonctions définie sur une partie A d'un EVN à valeurs dans un evn.

Suites de fonctions

Suites de fonctions

- Convergence simple (CVS), convergence uniforme (CVU), la CVU implique la CVS.
- Continuité et limite d'une suite de fonctions qui CVU, adaptation sur tout voisinage de A ou sur segment inclus dans I, si A = I, un intervalle de \mathbb{R} . Théorème de la double limite.
- Approximation uniforme des fonctions continues par morceaux par des fonctions en escalier. Théorème d'approximation uniforme de Weierstrass.
- Théorème de convergence dominé; si (f_n) CVU sur le segment [a,b] vers f, alors $\lim \int_a^b f_n =$
- $\int_a^b f$; primitivation d'une suite de fonction CVU. Si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions de classe \mathcal{C}^1 sur I qui converge simplement vers f sur Itelle que $(f'_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction h sur I. Alors f est de classe \mathcal{C}^1 sur I et : f' = h., adaptation au cas où (f'_n) CVU sur tout segment de I, extension aux fonctions de classe \mathcal{C}^k et \mathcal{C}^{∞} .

Série de fonctions

- CVS, CVU, convergence normale (CVN). La CVN implique la CVU qui implique la CVS.
- Utilisation de la CVU ou de la CVN pour montrer la continuité d'une série de fonctions, adaptation à tout segment inclus dans I ou tout voisinage de A.Théroème de la double limite, continuité de exp sur $\mathcal{M}_n(\mathbb{K})$ ou $\mathcal{L}(E)$.
- Si pour tout n de N, la fonction f_n est de classe \mathcal{C}^1 sur I, la série de fonction $\sum f_n$ converge simplement sur I, la série $\sum f'_n$ converge uniformément sur I (ou sur tout segment [a,b] inclus dans I), alors la série de fonctions $\sum_{n=0}^{+\infty} f_n$ est de classe \mathcal{C}^1 sur I et $\left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n'$ et extension aux fonctions de classe C^k .
- Intégration terme à terme cas positif : pour tout n de \mathbb{N} , la fonction f_n est continue par morceaux et intégrable sur I, $\sum f_n$ converge simplement vers S qui est continue par morceaux sur I, alors dans $\mathbb{R} \cup \{+\infty\}$: $\int_I (\sum_{n=0}^{+\infty} f_n(t)) dt = \int_I S(t) dt = \sum_{n=0}^{+\infty} \int_I f_n(t) dt$. Intégration terme à terme : pour tout n de \mathbb{N} , la fonction $\overline{f_n}$ est continue par morceaux et intégrable sur I, $\sum f_n$ converge simplement vers S qui est continue par morceaux sur I, $\sum \int_I |f_n(t)| dt$ converge, alors $\sum \int_I f_n(t) dt$ converge, S est intégrable sur I et $\int_I (\sum_{n=0}^{+\infty} f_n(t)) dt = \int_I S(t) dt = \int_I S(t) dt$ $\sum_{n=0}^{+\infty} \int_{I} f_n(t) dt.$
 - Intégration terme à terme sur un segment lorsque l'on a la CVU sur ce segment; primitivation d'une série de fonctions CVU.
- Compléments; recherche de limites et d'équivalents par encadrement à l'aide par exemple d'une comparaison série/intégrale.

BANQUE CCP