Semaine 13 : du 12 au 15 janvier

Sauf mention contraire, tout est à savoir.

Espaces probabilisés

Révisions de sup sur le dénombrement

- Cardinal, injections/ surjections/ bijections entre ensembles finis, ensembles finis et inclusion.
- Opérations sur les ensembles finis et cardinal : $card(\overline{A})$, $card(E \cup B)$, $card(E \times F)$, $card(\mathcal{F}(E, F))$, $card(\mathcal{P}(E))$.
- Cardinal et interprétation des *p*-listes, arrangements (pas vraiment au programme, mais le nombre d'injections entre ensembles finis l'est...), permutations et combinaisons.
- Symétie des coefficients binomiaux, triangle de Pascal, $\sum_{k=0}^{n} \binom{n}{k}$, $p\binom{n}{p} = n\binom{n-1}{p-1}$ et complément : formule de Vandermonde : $\sum_{k=0}^{n} \binom{a}{k} \binom{b}{n-k} = \binom{a+b}{n}$.

Dénombrabilité

Ne pas trop insister sur ce paragraphe.

- Définition, exemple de \mathbb{Z} , \mathbb{N}^2 , produit cartésien d'ensemble dénombrables.
- Réunion finie ou dénombrable d'ensemble au plus dénombrables, produit cartésien d'ensembles dénombrables. Application : Q est dénombrable.
- Toute partie de \mathbb{N} est au plus dénombrable, \mathbb{R} n'est pas dénombrable.
- Le support d'une famille sommable est au plus dénombrable.

Vocabulaire sur les ensembles

- Unions, intersections quelconques et opérations.
- Lien entre vocabulaire des essembles et celui des probabilités : issues, événements, systèmes complets d'événements...

Espaces probabilisés

- Tribu, stabilité des tribus par opérations.
- Probabilités, probabilités et opérations ensemblistes, probabilité d'une union croissante et d'une intersection décroissantes (et $\lim_{n\to+\infty} P\left(\bigcup_{k=1}^n A_k\right)$ et $\lim_{n\to+\infty} P\left(\bigcap_{k=1}^n A_k\right)$), sous-additivité.
- Si Ω est fini ou dénombrable, une probabilité P sur $(\Omega, \mathcal{P}(\Omega))$ s'identifie à une famille $(p_{\omega})_{\omega \in \Omega}$ de réels positifs sommable et de somme 1, via la formule : $\forall \omega \in \Omega, \ P(\{\omega\}) = p_{\omega}$.
- Révisions de sup : probabilité sur un univers fini, equiprobabilité, nombre de succès lors de n expériences indépendantes succès-échec.
- On admet l'existence d'une tribu et d'une probabilité sur l'espace modélisant une succession infinie d'épreuves aléatoires indépendantes.
- Probabilité conditionnelle, formule des probabilités composées, formules des probabilités totales, formule de Bayes.
- Indépendance, indépendance mutuelle.
- Compléments (HP) : Borel Cantelli 1 et 2 et interprétation, démonstration probabiliste de la formule d'Euler : $\frac{1}{\zeta(x)} = \prod_{k=1}^{+\infty} \left(1 \frac{1}{p_k^x}\right)$.

Variables aléatoires discrètes

• Variables aléaoires discrètes, notations $(X \in A)$, loi d'une variable aléatoire discrète.

- X variable aléatoire discrère et $f: X(\omega) \to E$, loi de f(X).
- Deux variable aléatoire ayant la même loi se note $X \sim Y$ et dans ce cas $f(X) \sim f(Y)$. L'étude plus approfondie des variables aléatoires sera pour la semaine prochaine. Ici on ne cherche que des lois de variables aléatoires afin d'illustrer les techniques de probabilité des paragraphes précédents.

BANQUE CCP

95, 104, 105, 107, 109, 112