MP* 2025-2026 DEVOIR A LA MAISON N 10 Chaptal

A rendre pour le jeudi 13 janvier

Notations :
e Si z est un nombre réel on note [x] sa partie entiere, c¢’est-a-dire le plus grand entier relatif qui
est inférieur ou égal a x.
e On appelle cardinal de I’ensemble fini E le nombre de ses éléments, que 1'on note | E].
e On note P(FE) 'ensemble des parties de 1’ensemble E.
e Dans tout le probleme on identifiera R™ a I'espace des matrices lignes M, (R) et on notera
(x,y) le produit scalaire canonique de ces vecteurs, soit

j=1

les z;, y; étant les composantes de x et y respectivement.
e Si V est un sous-ensemble de R™ on note Vect(V) l'espace vectoriel engendré par V. On note
V1 Porthogonal de V), c’est-a-dire I’ensemble des vecteurs y tels que Vz € V, (x,y) = 0.
e Si M est une matrice carrée de nombres réels, on note det(M) son déterminant.
Dans tout le probleme on pourra utiliser librement la formule de Stirling que 1’on rappelle :

nl ~ 27m<ﬁ> )

n—+00
Définition 1 (Espace de Rademacher) Sin,q € N*, on note
Qrn ={w=(wij, 1 <i<gq, 1<j<n)tels que N(i,7) € [1,¢] x [1,n], wi; = £1}.
Pour tout i € {1,...,q} et j € {1,...,n}, on introduit la variable aléatoire M, ; telle que

M Qn — {-1,1}
bl W = Wi ’

On munit Q ,, de la probabilité uniforme P. Cela signifie que les variables (M;;, 1 <i<gq, 1 < j <n)
sont indépendantes et de méme loi :

M My,
M® — :
Mn,l Mn,n
On note Lﬁ”), cee ngﬂ les vecteurs lignes de MW" . Par construction, ce sont des vecteurs aléatoires

indépendants et de méme loi.

Le but du probleme est de démontrer, qu’ainsi construite, une matrice aléatoire est inversible avec
forte probabilité quand n est grand :

Théoréme 1 (Komlds) lim P(det(M™)=0) = 0.

n—+00



A Procedé de construction de matrices aleatoires a coeflicients dans
{_17 1}

Soit p €]0,1[. On définit une suite (A;) de matrices aléatoires d’ordre n a coefficients dans {—1, 1}
selon le procédé suivant :

- on note Ay la matrice réelle d’ordre n dont tous les coefficients sont égaux a 1;

- pour tout entier naturel k, on construit la matrice A1 a partir de la matrice Ay en conservant
chaque coefficient de Ay égal a —1 et en changeant en —1 avec la probabilité p chaque coefficient
de A; égal a 1. Chaque coefficient égal a 1 a donc la probabilité ¢ = 1 —p de ne pas étre modifié;

- le processus s’arréte quand la matrice obtenue est égale a —A,.

On suppose avoir utilisé I'instruction
import numpy as np, numpy.random as rd

pour charger les bibliotheques numpy et numpy.random. Voici quelques fonctions de ces bibliotheques
qui peuvent étre utiles dans cette partie :

np.ones((n,n)) crée un tableau numpy de taille n x n dont tous les éléments valent 1;

- A.shape est un tuple qui contient les dimensions du tableau A

A.size donne le nombre total d’éléments du tableau A;

A.sum() renvoie la somme de tous les éléments du tableau A ;

- rd.binomial (1, p) simule une variable aléatoire suivant la loi de Bernoulli de parametre p.

1. Ecrire en PYTHON une fonction modif ie_matrice(p, A) qui prend en argument une proba-
bilité p et un tableau numpy représentant une matrice A de M,,(R) a coeflicients dans {—1,1}.
Cette fonction modifie le tableau a selon le procédé décrit ci-dessus.

2. En utilisant la fonction précédente, écrire en PYTHON une fonction nb_tours(p, n) qui prend
en argument une probabilité p et 'ordre n des matrices Ay et renvoie le plus petit entier k tel
que A, = —Ap, en partant de la matrice Ag.

3. Ecrire en PYTHON une fonction moyenne_tours(p, n, nbe) qui prend en argument une pro-
babilité p, 'ordre n des matrices A; et un nombre entier nbe et qui renvoie la moyenne, sur nbe
essais effectués, du nombre d’étapes nécessaires pour passer de Ag a —Aj.

B Coeflicients binomiaux

4. Soit n € N* : montrer que 'application

- (2)

est croissante sur {0,...,[n/2]}. En déduire que pour tout k € {0,...,n},

(£) = (1)

) quand n tend vers l'infini. En déduire qu’il existe un entier ny

(FHESTIC

6. Montrer que pour tout entier non nul n et tout k € {0,...,n},

(Z) k-1 < n*.

n
On note (¢;, 1 < i < n) la base canonique de R" et v = Zei. On identifie €2 ,, et le sous-

=1

5. Trouver un équivalent de ( "
[n/2]

tel que pour n > ng,



10.

11.

12.

13.

14.

15.

16.

ensemble de R™
{Zwi% (Wi,...,wp) € Ql,n} .
i=1

Pour tout ¢ € {1,...,n}, exprimer e; en fonction de v et v —2¢;. En déduire que Vect(§2; ,,) = R".

C Dimension 2

Déterminer l'espérance de det M.
Montrer que la variance de det M@ est égale & 2.
Calculer P(det M® = 0).

D Quelques bornes

On suppose dorénavant n > 2.
Quelle est la probabilité que les deux premiéres lignes de M™ soit égales ou opposées ?
En déduire que P (det M® = O) > 2 gin > 2.
Soient Iy, ...,1l, des vecteurs non nuls de R". Montrer que ces vecteurs sont liés si et seulement
si, il existe j € {1,...,n — 1} tel que
liy1 € Vect({ly,---,1;}).

En déduire que
n—1

P(det M™ =0) <> P (L;@I € Veet(L{™, ..., L<.”>) )

J
Jj=1

Soit H un sous-espace vectoriel de R™ de dimension d. On rappelle que H* est un sous-espace

vectoriel de dimension n — d et que (H*)* = H.

Montrer alors qu'il existe des réels (a; j, 1 <i<n—d, 1 <j<n) tels que

a1 ot Qg L1 0
r=(21,...,2,) EH = : : Sl =
Ap—d1 *° Op_dn Tn 0
Montrer qu’il existe 1 < iy < --- < iy < n tel que pour tout (y1,...,yq) € R? il existe un unique

r=(z1,...,2,) € H tel que x;, =y pour k=1,...,d.

En déduire que
P(L e H) < 24,

puis que pour tout j € {1,...,n— 1},
P (L§1’1 € Vect(L{™, ... ,Lg"))> <2 (3)
Indication : on pourra utiliser la conséquence suivante de la formule des probabilités totales

P(L{ e veet(L”, .. 1)) = 30 P (L € Veet(L{”, . LIIEY = 1, L = 1)

llw-,ljte,n

% P (LY“ — D, L = zj)

et lindépendance des vecteurs lignes. Soit ¢ < n et w € §Q,,. On note [y, -- [, ses vecteurs
lignes.
Montrer que I'on peut trouver un vecteur non nul orthogonal a Vect(l;, i = 1,...,q) qui soit a

coordonnées dans Z.



17.

18.
19.
20.

21.

22.

23.

E  Theoreme de Erdos-Littlewood-Offord

Définition 2 Soit n un entier non nul. Soit A un sous-ensemble de P({1,...,n}). On dit que
A est une anti-chaine si deux éléments distincts A et B quelconques de A sont incomparables,
c’est-a-dire tels que A n’est pas inclus dans B et B n’est pas inclus dans A.

Commengons par un exemple. Soit k& € {1,...,n} et A I'ensemble des parties de {1,...,n} de
cardinal k.

Montrer que Ay est une anti-chaine et que

4% () < 75

la deuxieme inégalité ayant lieu pour n assez grand.

Définition 3 Soit A une anti-chaine et A € A, de cardinal noté |A|. On note Sa, U'ensemble des
bijections o de {1,...,n} dans lui-méme telles que la restriction de o a {1,...,|A|} soit une

bijection de {1,...,|A|} dans A.

Quel est le cardinal de S, 7
Soit B € A avec B # A. Montrer que S4 N Sg = 0.
En déduire que si a; désigne, pour k < n, le nombre d’éléments de A de cardinal k, alors

n

ZCZSL
(i)

k=0

k

Montrer que

4% (1)

Soit v = (vy,...,v,) € R" tel que v; > 1 pour tout j =1,...,n. S A C {1,...,n} on pose
IR
jeA jeAe
ot A est le complémentaire de A dans {1,...,n}.
Montrer que si A C B C {1,...,n}, A# B, alors
sp— Syq > 2.

Soit J un intervalle ouvert de R de longueur 2 : montrer que si n est assez grand alors

1
PULM vy € J) < —.
(L) e < —
Montrer que cette propriété reste vraie si I'on suppose seulement que pour tout j € {1,...,n},

|vj| > 1. Indication : construire une bijection entre § ,, et l'ensemble des parties de {1,...,n}.
Construire une anti-chaine intéressante.



24.

25.

26.

27.

28.

29.

30.

F Universalite

Dans tout ce qui suit, k est un entier inférieur a n.

Définition 4 Soit V C 2y ,,. L'ensemble V est dit k-universel si pour tous les k-uplets
1<j1 <jar <Jr <nettout w € Qy,, il existe v €V tel que

Vj,, = Wi j,., pour tout m=1,... k.

m

Soit d € {1,...,n}. Montrer I'inclusion

d k
{{Lﬁ”), e Lén)} non k-universel} C U U ﬂ U {M,;, # wij,}-

(J177]k)€{177n}k WEQLk i=1m=1
J1<<Jk

(On rappelle que L§"> = (M;, ..., Mip)).

Montrer que la probabilité que {L(ln), e Lgn)} ne soit pas k-universel est majorée par

(Z) 9k(1 — g7k)d.

En déduire que si d > n/2 et k < Inn, alors, pour n assez grand,

P <{L§"), . ,Lfin) non k;-universel) <

S

(4)

Soit V C €y, un ensemble k-universel tel qu’il existe v € V*\ {0} : montrer que v a au moins
k + 1 coordonnées non nulles. En vertu de la question 16, on peut supposer que les coordonnées

de v sont des entiers relatifs.
Montrer que si k est assez grand
P (L({” € Vect(V)) < PUL™ ) =0) < kY2 (5)

Soit (t,,n € N) une suite croissante d’entiers telle que t,/n — 0.

Montrer que si n est assez grand alors n —t,, > n/2 et

2*,

n—1
> (1) e Veer(rf”,... 1)) < (6)

j=n—tn+1 Vinn
Indication : on distinguera les cas selon que Vect(Lgn), o ,Lg-n)) est k-universel ou pas et l'on

prendra k = [Inn].

G Théoreme de Komlos

En déduire le théoreme de Komlos.
Indication : on pourra partir de (2) et choisir convenablement une suite (t,, n > 1).



