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Chaptal

À rendre pour le jeudi 13 janvier

Notations :
� Si x est un nombre réel on note [x] sa partie entière, c’est-à-dire le plus grand entier relatif qui
est inférieur ou égal à x.

� On appelle cardinal de l’ensemble fini E le nombre de ses éléments, que l’on note |E|.
� On note P(E) l’ensemble des parties de l’ensemble E.
� Dans tout le problème on identifiera Rn à l’espace des matrices lignes M1,n(R) et on notera
⟨x, y⟩ le produit scalaire canonique de ces vecteurs, soit

⟨x, y⟩ =
n∑

j=1

xjyj,

les xj, yj étant les composantes de x et y respectivement.
� Si V est un sous-ensemble de Rn on note Vect(V) l’espace vectoriel engendré par V . On note
V⊥ l’orthogonal de V , c’est-à-dire l’ensemble des vecteurs y tels que ∀x ∈ V , ⟨x, y⟩ = 0.

� Si M est une matrice carrée de nombres réels, on note det(M) son déterminant.
Dans tout le problème on pourra utiliser librement la formule de Stirling que l’on rappelle :

n! ∼
n→+∞

√
2πn

(n
e

)n

.

Définition 1 (Espace de Rademacher) Si n, q ∈ N∗, on note

Ωq,n = {ω = (ωi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ n) tels que :∀(i, j) ∈ [[1, q]]× [[1, n]], ωi,j = ±1} .

Pour tout i ∈ {1, . . . , q} et j ∈ {1, . . . , n}, on introduit la variable aléatoire Mi,j telle que

Mi,j :

{
Ωq,n → {−1, 1}

ω 7→ ωi,j
.

On munit Ωq,n de la probabilité uniforme P. Cela signifie que les variables (Mi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ n)
sont indépendantes et de même loi :

P (Mi,j = 1) =
1

2
= P (Mi,j = −1).

Si q = n, on note M (n) la matrice aléatoire

M (n) =

M1,1 · · · M1,n
...

...
Mn,1 · · · Mn,n

 .

On note L
(n)
1 , . . . , L(n)

n les vecteurs lignes de M (n). Par construction, ce sont des vecteurs aléatoires
indépendants et de même loi.

Le but du problème est de démontrer, qu’ainsi construite, une matrice aléatoire est inversible avec
forte probabilité quand n est grand :

Théorème 1 (Komlós) lim
n→+∞

P (det(M (n)) = 0) = 0.



A Procédé de construction de matrices aléatoires à coefficients dans

{−1, 1}
Soit p ∈]0, 1[. On définit une suite (Ak) de matrices aléatoires d’ordre n à coefficients dans {−1, 1}
selon le procédé suivant :

- on note A0 la matrice réelle d’ordre n dont tous les coefficients sont égaux à 1 ;
- pour tout entier naturel k, on construit la matrice Ak+1 à partir de la matrice Ak en conservant
chaque coefficient de Ak égal à −1 et en changeant en −1 avec la probabilité p chaque coefficient
de Ak égal à 1. Chaque coefficient égal à 1 a donc la probabilité q = 1−p de ne pas être modifié ;

- le processus s’arrête quand la matrice obtenue est égale à −A0.

On suppose avoir utilisé l’instruction

import numpy as np, numpy.random as rd

pour charger les bibliothèques numpy et numpy.random. Voici quelques fonctions de ces bibliothèques
qui peuvent être utiles dans cette partie :

- np.ones((n,n)) crée un tableau numpy de taille n× n dont tous les éléments valent 1 ;
- A.shape est un tuple qui contient les dimensions du tableau A ;
- A.size donne le nombre total d’éléments du tableau A ;
- A.sum() renvoie la somme de tous les éléments du tableau A ;
- rd.binomial(1, p) simule une variable aléatoire suivant la loi de Bernoulli de paramètre p.

1. Écrire en PYTHON une fonction modifie_matrice(p, A) qui prend en argument une proba-
bilité p et un tableau numpy représentant une matrice A de Mn(R) à coefficients dans {−1, 1}.
Cette fonction modifie le tableau a selon le procédé décrit ci-dessus.

2. En utilisant la fonction précédente, écrire en PYTHON une fonction nb_tours(p, n) qui prend
en argument une probabilité p et l’ordre n des matrices Ak et renvoie le plus petit entier k tel
que Ak = −A0, en partant de la matrice A0.

3. Écrire en PYTHON une fonction moyenne_tours(p, n, nbe) qui prend en argument une pro-
babilité p, l’ordre n des matrices Ak et un nombre entier nbe et qui renvoie la moyenne, sur nbe
essais effectués, du nombre d’étapes nécessaires pour passer de A0 à −A0.

B Coefficients binomiaux

4. Soit n ∈ N∗ : montrer que l’application

k 7→
(
n

k

)
est croissante sur {0, . . . , [n/2]}. En déduire que pour tout k ∈ {0, . . . , n},(

n

k

)
≤

(
n

[n/2]

)
.

5. Trouver un équivalent de

(
n

[n/2]

)
quand n tend vers l’infini. En déduire qu’il existe un entier n0

tel que pour n ≥ n0, (
n

[n/2]

)
≤ 2n√

n
. (1)

6. Montrer que pour tout entier non nul n et tout k ∈ {0, . . . , n},(
n

k

)
2k−1 ≤ nk.

On note (ei, 1 ≤ i ≤ n) la base canonique de Rn et v =
n∑

i=1

ei. On identifie Ω1,n et le sous-



ensemble de Rn {
n∑

i=1

ωiei, (ω1, . . . , ωn) ∈ Ω1,n

}
.

7. Pour tout i ∈ {1, . . . , n}, exprimer ei en fonction de v et v−2ei. En déduire que Vect(Ω1,n) = Rn.

C Dimension 2

8. Déterminer l’espérance de detM (2).

9. Montrer que la variance de detM (2) est égale à 2.

10. Calculer P (detM (2) = 0).

D Quelques bornes

On suppose dorénavant n ≥ 2.

11. Quelle est la probabilité que les deux premières lignes de M (n) soit égales ou opposées ?
En déduire que P

(
detM (n) = 0

)
≥ 21−n si n ≥ 2.

12. Soient l1, . . . , ln des vecteurs non nuls de Rn. Montrer que ces vecteurs sont liés si et seulement
si, il existe j ∈ {1, . . . , n− 1} tel que

lj+1 ∈ Vect({l1, · · · , lj}).

En déduire que

P (detM (n) = 0) ≤
n−1∑
j=1

P
(
L
(n)
j+1 ∈ Vect(L

(n)
1 , . . . , L

(n)
j

)
. (2)

Soit H un sous-espace vectoriel de Rn de dimension d. On rappelle que H⊥ est un sous-espace

vectoriel de dimension n− d et que (H⊥)⊥ = H.

13. Montrer alors qu’il existe des réels (αi,j, 1 ≤ i ≤ n− d, 1 ≤ j ≤ n) tels que

x = (x1, . . . , xn) ∈ H ⇔

 α1,1 · · · α1,n
...

...
αn−d,1 · · · αn−d,n


x1

...
xn

 =

0
...
0

 .

14. Montrer qu’il existe 1 ≤ i1 < · · · < id ≤ n tel que pour tout (y1, . . . , yd) ∈ Rd il existe un unique
x = (x1, . . . , xn) ∈ H tel que xik = yk pour k = 1, . . . , d.

15. En déduire que
P (L

(n)
1 ∈ H) ≤ 2d−n,

puis que pour tout j ∈ {1, . . . , n− 1},

P
(
L
(n)
j+1 ∈ Vect(L

(n)
1 , . . . , L

(n)
j )

)
≤ 2j−n (3)

Indication : on pourra utiliser la conséquence suivante de la formule des probabilités totales

P
(
L
(n)
j+1 ∈ Vect(L

(n)
1 , . . . , L

(n)
j )

)
=

∑
l1,...,lj∈Ω1,n

P
(
L
(n)
j+1 ∈ Vect(L

(n)
1 , . . . , L

(n)
j )|L(n)

1 = l1, . . . , L
(n)
j = lj

)
× P

(
L
(n)
1 = l1, . . . , L

(n)
j = lj

)
et l’indépendance des vecteurs lignes. Soit q < n et ω ∈ Ωq,n. On note l1, · · · , lq ses vecteurs

lignes.

16. Montrer que l’on peut trouver un vecteur non nul orthogonal à Vect(li, i = 1, . . . , q) qui soit à
coordonnées dans Z.



E Théorème de Erdös-Littlewood-Offord

Définition 2 Soit n un entier non nul. Soit A un sous-ensemble de P({1, . . . , n}). On dit que
A est une anti-châıne si deux éléments distincts A et B quelconques de A sont incomparables,
c’est-à-dire tels que A n’est pas inclus dans B et B n’est pas inclus dans A.

Commençons par un exemple. Soit k ∈ {1, . . . , n} et Ak l’ensemble des parties de {1, . . . , n} de
cardinal k.

17. Montrer que Ak est une anti-châıne et que

|Ak| ≤
(

n

[n/2]

)
≤ 2n√

n
,

la deuxième inégalité ayant lieu pour n assez grand.

Définition 3 Soit A une anti-châıne et A ∈ A, de cardinal noté |A|. On note SA, l’ensemble des
bijections σ de {1, . . . , n} dans lui-même telles que la restriction de σ à {1, . . . , |A|} soit une
bijection de {1, . . . , |A|} dans A.

18. Quel est le cardinal de SA ?

19. Soit B ∈ A avec B ̸= A. Montrer que SA ∩ SB = ∅.
20. En déduire que si ak désigne, pour k ≤ n, le nombre d’éléments de A de cardinal k, alors

n∑
k=0

ak(
n

k

) ≤ 1.

21. Montrer que

|A| ≤
(

n

[n/2]

)
.

Soit v = (v1, . . . , vn) ∈ Rn tel que vj ≥ 1 pour tout j = 1, . . . , n. Si A ⊂ {1, . . . , n} on pose

sA =
∑
j∈A

vj −
∑
j∈Ac

vj

où Ac est le complémentaire de A dans {1, . . . , n}.

22. Montrer que si A ⊂ B ⊂ {1, . . . , n}, A ̸= B, alors

sB − sA ≥ 2.

23. Soit J un intervalle ouvert de R de longueur 2 : montrer que si n est assez grand alors

P (⟨L(n)
1 , v⟩ ∈ J) ≤ 1√

n
.

Montrer que cette propriété reste vraie si l’on suppose seulement que pour tout j ∈ {1, . . . , n},
|vj| ≥ 1. Indication : construire une bijection entre Ω1,n et l’ensemble des parties de {1, . . . , n}.
Construire une anti-châıne intéressante.



F Universalité

Dans tout ce qui suit, k est un entier inférieur à n.

Définition 4 Soit V ⊂ Ω1,n. L’ensemble V est dit k-universel si pour tous les k-uplets
1 ≤ j1 < j2 · · · < jk ≤ n et tout ω ∈ Ω1,n, il existe v ∈ V tel que

vjm = ω1,jm , pour tout m = 1, . . . , k.

24. Soit d ∈ {1, . . . , n}. Montrer l’inclusion

{
{L(n)

1 , . . . , L
(n)
d } non k-universel

}
⊂

⋃
(j1,...,jk)∈{1,...,n}k

j1<···<jk

⋃
ω∈Ω1,k

d⋂
i=1

k⋃
m=1

{Mi,jm ̸= ω1,jm}.

(On rappelle que L
(n)
i = (Mi,1, . . . ,Mi,n)).

25. Montrer que la probabilité que {L(n)
1 , . . . , L

(n)
d } ne soit pas k-universel est majorée par(

n

k

)
2k(1− 2−k)d.

26. En déduire que si d ≥ n/2 et k ≤ lnn, alors, pour n assez grand,

P
(
{L(n)

1 , . . . , L
(n)
d non k-universel

)
≤ 1

n
. (4)

27. Soit V ⊂ Ω1,n un ensemble k-universel tel qu’il existe v ∈ V⊥ \ {0} : montrer que v a au moins
k + 1 coordonnées non nulles. En vertu de la question 16, on peut supposer que les coordonnées

de v sont des entiers relatifs.

28. Montrer que si k est assez grand

P
(
L
(n)
1 ∈ Vect(V)

)
≤ P (⟨L(n)

1 , v⟩ = 0) ≤ k−1/2. (5)

Soit (tn, n ∈ N) une suite croissante d’entiers telle que tn/n → 0.

29. Montrer que si n est assez grand alors n− tn ≥ n/2 et

n−1∑
j=n−tn+1

P
(
L
(n)
j+1 ∈ Vect(L

(n)
1 , . . . , L

(n)
j )

)
≤ 2tn√

lnn
. (6)

Indication : on distinguera les cas selon que Vect(L
(n)
1 , . . . , L

(n)
j ) est k-universel ou pas et l’on

prendra k = [lnn].

G Théorème de Komlós

30. En déduire le théorème de Komlós.
Indication : on pourra partir de (2) et choisir convenablement une suite (tn, n ≥ 1).


