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Chaptal

À rendre pour le mardi 3 février

On note :
C(R) le C-espace vectoriel des fonctions continues de R dans C.
Cb(R) le sous-espace vectoriel de C(R) constitué des fonctions bornées appartenant à C(R).
L1(R) le sous-espace vectoriel de C(R) constitué des fonctions intégrables sur R et appartenant à C(R).
L2(R) le sous-espace vectoriel de C(R) constitué des fonctions de carré intégrable sur R et appartenant
à C(R).
Pour toute fonction f de Cb(R), on pose ∥f∥∞ = sup

t∈R
|f(t)|.

Pour toute fonction f de L1(R), on pose ∥f∥1 =
∫
R
|f(t)|dt.

Pour toute fonction f de L2(R), on pose ∥f∥2 =

√∫
R
|f(t)|2 dt.

On admet que ces expressions définissent des normes sur les espaces en question.
Soit f une fonction complexe d’une variable réelle. Par définition, le support de f est l’adhérence de
l’ensemble Af = {x ∈ R | f(x) ̸= 0}. On dit que f est à support compact si son support est un
compact de R ; en d’autres termes, f est à support compact si et seulement s’il existe un réel A ⩾ 0
tel que f soit nulle en dehors de [−A,A].
Par définition, une approximation de l’unité est une suite de fonctions (fn)n∈N, continues par morceaux
et intégrables sur R, vérifiant les conditions suivantes :

∀n ∈ N, fn est positive sur R

∀n ∈ N,
∫
R
fn = 1

∀ε > 0, lim
n→+∞

∫ −ε

−∞
fn = 0 et lim

n→+∞

∫ +∞

ε

fn = 0

I Produit de convolution

Soit f, g ∈ C(R). Lorsque la fonction t 7→ f(t)g(x− t) est intégrable sur R, on pose

(f ∗ g)(x) =
∫
R
f(t)g(x− t)dt

La fonction f ∗ g est appelée produit de convolution de f par g.

I.A - Généralités

1. Dans chacun des deux cas suivants, montrer que f ∗ g est définie et bornée sur R et donner une
majoration de ∥f ∗ g∥∞ pouvant faire intervenir ∥ · ∥1, ∥ · ∥2 ou ∥ · ∥∞.

a. f ∈ L1(R), g ∈ Cb(R) ;
b. f, g ∈ L2(R).

2. Soient f, g ∈ C(R) telles que f ∗ g(x) soit défini pour tout réel x. Montrer que f ∗ g = g ∗ f .
3. Montrer que si f et g sont à support compact, alors f ∗ g est à support compact.



I.B - Produit de convolution de deux éléments de L2(R)
Pour toute fonction h de C(R) et tout réel α, on définit la fonction Tα(h) en posant Tα(h)(x) = h(x−α)
pour tout x ∈ R.
Dans cette sous-partie I.B, on suppose que f et g appartiennent à L2(R).

1. Montrer qu’une fonction h est uniformément continue sur R si et seulement si
lim
α→0

∥Tα(h)− h∥∞ = 0.

2. Pour tout réel α, montrer que Tα(f ∗ g) = (Tα(f)) ∗ g.
3. Pour tout réel α, montrer que ∥Tα(f ∗ g)− f ∗ g∥∞ ⩽ ∥Tα(f)− f∥2 × ∥g∥2.
4. En déduire que f ∗ g est uniformément continue sur R dans le cas où f est à support compact.

5. Montrer que f ∗ g est uniformément continue sur R dans le cas général.

I. C - Continuité, dérivabilité

1. On suppose que f ∈ L1(R) et g ∈ Cb(R).

a. Montrer que f ∗ g est continue.

b. Montrer que si g est uniformément continue sur R, alors f ∗ g est uniformément continue
sur R.

2. Soit k un entier naturel non nul. On suppose que g est de classe Ck sur R et que toutes ses
fonctions dérivées, jusqu’à l’ordre k, sont bornées sur R.
Montrer que f ∗ g est de classe Ck sur R et préciser sa fonction dérivée d’ordre k.

I.D - Approximation de l’unité

Soit f ∈ Cb(R) et soit (δn) une suite de fonctions approximation de l’unité.

1. Montrer que la suite (f ∗ δn)n∈N converge simplement vers f sur R.
2. Montrer que si f est à support compact, alors la suite (f ∗ δn)n∈N converge uniformément vers f

sur R.
3. Pour tout entier naturel n, on note hn la fonction définie sur [−1, 1] par

hn(t) =
(1− t2)

n

λn

et nulle en dehors de [−1, 1], le réel λn étant donné par la formule

λn =

∫ 1

−1

(
1− t2

)n
dt

a. Montrer que la suite de fonctions (hn)n∈N est une approximation de l’unité.

b. Montrer que si f est une fonction continue à support inclus dans

[
−1

2
,
1

2

]
, alors f ∗ hn est

une fonction polynomiale sur

[
−1

2
,
1

2

]
et nulle en dehors de l’intervalle

[
−3

2
,
3

2

]
.

c. En déduire une démonstration du théorème de Weierstrass : toute fonction complexe conti-
nue sur un segment de R est limite uniforme sur ce segment d’une suite de fonctions poly-
nomiales.

4. Déterminer lim
n→+∞

λn.

5. Existe-t-il une fonction g ∈ Cb(R) telle que pour toute fonction f de L1(R), on ait f ∗ g = f ?



II Transformée de Fourier

Pour toute fonction f ∈ L1(R), on appelle transformée de Fourier de f la fonction, notée f̂ , définie par

∀x ∈ R f̂(x) =

∫
R
f(t)e−ixt dt.

Dans cette partie, on pourra utilser sans démonstration l’un des théroèmes de Fubini
� sur un rectangle :
Soient [a, b], [c, d] deux segments de R et f : [a, b]× [c, d] → C continue. Les intégrales ci-dessous
ont un sens et : ∫ b

a

(∫ d

c

f(x, y)dy

)
dx =

∫ d

c

(∫ b

a

f(x, y)dx

)
dy.

� sur R2 :
soit f : R2 → C continue telle qu’il existe deux fonction u, v continues et intégrables sur R telles
que : ∀(x, y) ∈ R2, |f(x, y)| ≤ u(x)v(y). Les intégrales ci-dessous ont un sens et :∫

R

(∫
R
f(x, y)dy

)
dx =

∫
R

(∫
R
f(x, y)dx

)
dy.

II.A

Pour toute fonction f ∈ L1(R), montrer que f̂ appartient à Cb(R).

II.B - Transformée de Fourier d’un produit de convolution

Soit f, g ∈ L1(R).

1. On suppose que g est bornée.

a. On pose φ : x 7→
∫
R
|f(t)g(x− t)|dt et φn : x 7→

∫ n

−n

|f(t)g(x− t)|dt, pour n ∈ N. Montrer

que (φn) converge uniformément vers φ.

b. En utilisant un théorème de Fubini, en déduire que :

∀A ∈ R∗
+,

∫ A

−A

φ ≤ ∥f∥1.∥g∥1.

c. Montrer que f ∗ g est intégrable sur R.

On admet que

∫
R
f ∗ g =

∫
R
f ×

∫
R
g.

d. Montrer que f̂ ∗ g = f̂ × ĝ.

2. Un contre-exemple

Montrer qu’il existe deux fonctions f et g dans L1(R) telle que f ∗ g(0) ne soit pas défini.

II.C - Sinus cardinal

On définit, pour tout entier naturel non nul n, la fonction kn par{
kn(x) = 1− |x|

n
si |x| ≤ n

kn(x) = 0 sinon
.



1. Exprimer la transformée de Fourier k̂n(x) à l’aide de la fonction définie par

φ(x) =


(
sinx

x

)2

si x ̸= 0

1 si x = 0

2. Justifier que φ ∈ L1(R).

On admet que

∫
R
φ = π. On pose Kn =

1

2π
k̂n.

3. Montrer que la suite de fonctions (Kn)n⩾1 est une approximation de l’unité.

II. D - Inversion de Fourier

Soit f ∈ L1(R) telle que f̂ ∈ L1(R). Pour tout réel t et tout entier naturel non nul n, on pose

In(t) =
1

2π

∫
R
kn(x)f̂(−x)e−itx dx

1. Montrer que In et f ∗Kn sont bien définies sur R.
2. Pour tout réel t et tout entier naturel non nul n, montrer que In(t) = (f ∗Kn) (t).

3. En déduire, pour tout réel t :

f(t) =
1

2π

∫
R
f̂(x)eitx dx

III Convolution et codimension finie

Voici quelques définitions.
� Soit E un espace vectoriel. On note E∗ = L(E,R) l’ensemble des formes linéaires de E.
� Soit F un sous-espace vectoriel de E. On dit que F est de codimension finie s’il existe un sous-
espace vectoriel G de E qui est de dimension finie avec F ⊕ G = E. La codimension de F est
dim(G) et on notera celle-ci codim(F ) = dim(G).
Sinon, on dit que F est de codimension infinie.
On admettra l’unicité de la dimension d’un supplémentaire de F lorsqu’elle existe.

Dans cette partie, on suppose que g ∈ Cb(R). On s’intéresse à la codimension dans L1(R) du sous-espace
vectoriel

Ng =
{
f ∈ L1(R) | f ∗ g = 0

}
On note Vg l’espace vectoriel engendré par les fonctions Tα(g) :

Vg = Vect (Tα(g))α∈R

où, comme au I.B, on note Tα(g) la fonction x 7→ g(x− α).

III.A

À toute fonction g de Cb(R), on associe la forme linéaire φg surL
1(R) définie par

φg(f) =

∫
R
f(t)g(−t)dt

Soit (g1, . . . , gp) une famille d’éléments de Cb(R).

1. Montrer que la famille (g1, . . . , gp) est libre si et seulement si la famille
(
φg1 , . . . , φgp

)
est libre.



2. Soit (f1, ..., fp) une famille libre de E∗. Montrer que l’application ψ :

{
E −→ Cp

x 7→ (f1(x), ..., fp(x))
est surjective.

3. Soit E un espace vectoriel de dimension infinie et (fn)n∈N une famille de formes linéaires sur E.
On note

K =
⋂
n∈N

Ker (fn)

Montrer que la codimension de K dans E est égale au rang de la famille (fn)n∈N dans l’espace
dual E∗ (on commencera par le cas où ce rang est fini).

On admet que ce résultat reste valable pour une famille non dénombrable

4. Montrer que la codimension de Ng dans L1(R) est égale à la dimension de Vg.

5. a. Soit β ∈ R et soit g la fonction définie par g(t) = eiβt pour tout t ∈ R. Déterminer la
codimension de Ng dans L1(R).

b. Soit n un entier naturel. Montrer qu’il existe une fonction g de Cb(R) telle que Ng soit de
codimension n dans L1(R).

III. B - Hypothèse A

Soit g ∈ Cb(R). On dit que g vérifie l’hypothèse A si g est une fonction de classe C∞ sur R, bornée et
dont les fonctions dérivées à tout ordre sont bornées sur R.
Montrer que, si Ng est de codimension finie dans L1(R) et si g vérifie l’hypothèse A , alors g est solution
d’une équation différentielle linéaire à coefficients constants.

III. C - Cas général

Soit g ∈ Cb(R). On suppose que Ng est de codimension finie n dans L1(R).

1. Montrer qu’il existe des réels α1, α2, . . . , αn et des fonctionsm1, . . . ,mn d’une variable réelle telles
que, pour tout réel α,

Tα(g) =
n∑

i=1

mi(α)Tαi
(g)

2. Soit F un sous-espace de dimension finie, notée p, de C(R). Pour toute fonction f ∈ C(R) et
pour tout réel x, on note ex(f) = f(x).

a. Montrer qu’il existe des réels a1, . . . , ap tels que
(
ea1 , . . . , eap

)
soit une base de l’espace F ∗

b. Si (f1, . . . , fp) est une famille d’éléments de F , montrer que Det (fi (aj))1⩽i,j⩽p est non nul
si et seulement si (f1, . . . , fp) est une base de F .

3. En appliquant la question III.C.2) à Vg, montrer que si g est de classe Ck alors les fonctions
m1, . . . ,mn sont de classe Ck.

4. Montrer que, pour tout entier naturel r non nul, Vhr∗g est de dimension finie (les fonctions hr
sont celles de la question I.D.3).

5. Montrer que pour r assez grand la dimension de Vhr∗g est égale à celle de Vg.

6. En déduire que les fonctions m1, . . . ,mn sont de classe C∞.

7. Montrer que pour g ∈ Cb(R), si Ng est de codimension finie dans L1(R), alors g vérifie l’hypothèse
A de la question III-B.


