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Sujet

Notations

Toutes les fonctions considérées dans ce sujet vont de R vers C.

Une fonction continue u de R vers C est dite “a support compact” si u
est nulle en dehors d’un intervalle borné. En particulier si u est une fonction
continue & support compact, [+ |u(z)|dz et [T |u(z)|? dz convergent.

Si u est une fonction continue telle que [*<° |u(z)| dz converge, on définit
sa transformée de Fourier Fu par

Fu(€) = %/}Ru(z)e““z dz.

La transformée de Fourier Fu est alors une fonction de R vers C.
On définit de méme

Su(y) = -% /u;u(x)ei’”y dx

qui est une fonction de R vers C.
Si u est une fonction de R vers C on note

[ulloo = sup [u(z)]
Tz€R

et

full = ([ tut@) o)™,

sL 7 ’ . . . . 7, . 2
ces quantités étant infinies respectivement si u n’est pas bornée ou si lu|

n’est pas intégrable sur R.
On admettra les deux résultats suivants que 1’on pourra utiliser en par-
ticulier aux questions 1.6 et 2.6: pour toute fonction continue u telle que

Jo lu(z)| dz et f; |u(z)|? dz convergent on a
[Fullz = flull2 (1)

et

F(Su)(§) = (&) (2)

pour tout £ € R.

On admettra le théoréme de Fubini :
Soit f: (x,y) — fl(z,y) une application continue de R? dans R telle qu'il
existe deux applications hy; et ho continues sur | et intégrables sur B

aved
V(z,y) € B, |f(z.y)| € hu(x)ha(y)

alors [ ( [ _f{;r.y]-:l.t.') dy et [ ( [ flz, yjrly) dir sont convergentes et
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ces deux intégrales doubles sont egales.
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Partie I

1.1)

1.2)

1.3.a)

1.3.b)

1.3.c)

Soit ¢ la fonction définie par ¢o(z) = e 12" siz >0 et ¢o(z) = 0 si
z < 0. Montrer que pour z > 0 et k € N, d*@y/dz* est de la forme
Pi(z)e V" /Qu(z) ol Py et Qx sont deux polynémes. En déduire que
¢o est une fonction C* sur R.

Vérifier que ¢o(z) ¢o(1 — x) est une fonction C*° sur R, nulle en dehors
de [0,1]. Montrer que pour tout intervalle [a,b] (a < b) il existe une
fonction de classe C*, strictement positive sur |a, b[ et nulle en dehors
de [a, b].

Soit 7 une fonction strictement positive sur ]3/4,8/3[, nulle en dehors
de cet intervalle. Montrer que pour tout z € R,

> b(27al)

q20
ne comporte qu'au plus deux termes non nuls. Soit ¢(z) défini par

_ W(la])
@) = TR T 9 () + 9@ 1)

si ¥(|z]) # 0 et par ¢(z) = 0 sinon. Montrer

+00
> 6(27z)) =1
q=0

pour |z| > 3/2.

Montrer qu'il existe deux fonctions C* sur R, x(z) (paire et nulle en
dehors de lintervalle [—2,2]) et ¢(z) (nulle en dehors de l'intervalle
[3/4,8/3]) telles que

+o00
x(z) + X_;¢(2“’|xl) =1

Montrer que x%(z) + a5 #2(279|z|) est minoré par une constante
strictement positive sur R.



1.4) Soit u une fonction continue & support compact. On définit pour ¢ € N

Dgu=S((27I¢]) Fu(§))
et
Aoyu = S(x(€) Fu(©)).
Vérifier que Aqu et A_ju définissent des fonctions C* sur R.

1.5) Soit ¢ € N. Montrer que Aju peut se mettre sous la forme
+00
Aqu(a) = [ hqlz - y) uly) dy (3)

—0Q

ol
1 [+oo .
ho(e) = 5= [ slele) ez,

1.6) Vérifier que h, est une fonction C* sur R. Montrer que |hy(z)|, |hq(z)- 2|
et |hy(z) - 22| sont bornées sur R. Montrer que

/+°° hqe(y)dy =0

—00

(on pourra utiliser (2)), et montrer que [ |h,(y)|dy est indépendant
de gq.
1.7) Montrer que A_ju peut se mettre sous la forme
+00
Ayu(e) = [ gle - y)u(y)dy @)
ol g est une fonction C* sur R. Vérifier que |g(z)|, |g(z).z| et |g(z).z?|
sont bornées sur R.

1.8) Montrer qu'’il existe une constante C' (ne dépendant pas de u) telle que
pour tout ¢ € N on ait

”Aqu”oo < Clufloo

et
[(Agw)leo < C27Julleo

(le ’ désignant la dérivée en z).



Partie 11

Pour 0 < a < 1 on définit ’espace de Holder C%® comme étant I’ensemble
des fonctions continues u(z) telles que

[u(y) — u(z)]

o < 400.
ly — x|

[ullco. = sup |u(z)] + sup
z€R z<y

2.1) Montrer que Il - ||co.a est une norme sur C%=.
1

2.2) Montrer que si u € C%* et v € C%* alors uv € C% et
lufese < C(lullolvllens + follolcor)

pour une certaine constante C' indépendante de u et de v.

2.3) Est ce que C! (ensemble des fonctions continiment dérivables sur R)
est I'’ensemble des fonctions continues sur R telles que

|u(y) — u(z)|

sup |u(z)| + sup < +00?
z€R z<y Iy - ml
2.4) Soit a > 1. Montrer que
u(y) — u(z
{u €C® | sup|u(z)|+sup [u(y) — ulz)] < -|—oo}
TER z<y Iy - -’E]a

est 'ensemble des fonctions constantes.

2.5) Soit 0 < o < 1. Soit u € C%*. Montrer que les formules (3) et (4)
définissent bien des fonctions bornées Aju, et que

sup  27%|Azulleo < 00.
—1<g<+00

Indication: montrer que pour ¢ > 0, Aju peut s’écrire sous la forme

—00

Agu(e) = [ (y) = w(@))ho(a — )dy.
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2.6) Soit 0 < o < 1. Soit u une fonction continue & support compact. On
suppose que
sup 27| Aqul|oo < +00
¢2-1

Soit p > 0. Posons S,u = st Agu et Ryu = Z;ﬁ; Agu.

2.6.1) Montrer que R,u est bien définie et est une fonction continue et
bornée.

2.6.2) Montrer que |Ju — Syul|2 tend vers 0 quand p tend vers l'infini (on
pourra utiliser (1) et (2)). En déduire que

o0
u= Z Aqu,
q=-1
c’est-a-dire u = Spu + Rpu.
2.6.3) Montrer qu'il existe une constante Cy telle que pour tout ¢ > 0,
(Agu) loo < Co27||Agul|co-

2.6.4) Montrer qu’il existe une constante C; telle que pour tout p > 0,

[1(Spw) [0 < ClQp(l*a)-
2.6.5) Vérifier
|lu(z) = u(y)] <z =yl - [1(Sp)lleo + 2[| Bpllco-

2.6.6) Montrer que u € C%* en choisissant astucieusement p.

Partie II1

On note C} I’ensemble des fonctions u continues et & support compact sur R
telles que SUP_j < cto0 29[| AgUfle0 < +00.

3.1) Soit u € C}. Montrer que
u(z +y) + ulz — y) — 2u(z)] < Jy* 3 11(Aqu) oo +4 D 1 Agulloo:

q<p q2p

En déduire qu'’il existe une constante C' telle que
lu(z +y) +u(z — y) — 2u(z)| < Cly|

pour tous z et y.



3.2) Enoncer et démontrer une réciproque de la question précédente.

3.3) Montrer que si u € C! alors il existe une constante C telle que pour
tous z et y tels que |z —y| < 1 on ait

[u(z) = u(y)| < Clz —y| (1 - log|z — y]).

3.4) Comparer C} et C! (pour les fonctions & support compact).



