1 Suites de fonctions

1.1 Modes de convergence d'une suite de fonctions

Définition 1.1.1 (Convergence simple) On dit que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f si

$$\forall x \in A, \lim_{n \to +\infty} f_n(x) = f(x).$$

On dit alors que la fonction f est la limite simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$.

Définition 1.1.2 (Convergence uniforme) 1. On dit que la suite de fonction $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f si :

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, \ n \ge N \Rightarrow (\forall x \in A, \ |f_n(x) - f(x)| \le \varepsilon).$$

2. On peut reformuler cette définition de façon plus pratique. La suite de fonction $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f si : à partir d'un certain rang, les fonctions $f_n - f$ sont bornées et : $\lim_{n\to+\infty} \|f_n - f\|_{\infty} = 0.$

Proposition 1.1.1 (La convergence uniforme implique la convergence simple) $Si(f_n)$ converge uniformément vers f, alors (f_n) converge simplement vers f.

1.2 Méthodes pour montrer les modes de convergence

• Pour la convergence simple (CVS) : on fixe x (que l'on traite comme une constante) et on fait tendre n vers $+\infty$.

Exemple : CVS de la suite de fonctions définies par $f_n: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \left(1 + \frac{x}{n}\right)^n \end{array} \right.$

- Pour la convergence uniforme (CVU) : on cherche l'éventuelle limite f à l'aide de la convergence simple, puis :
 - On trouve, par des majorations à la main, une suite $(\alpha_n)_{n\in\mathbb{N}}$ qui converge vers 0 telle que : $\forall x \in A, |f(t) f_n(t)| \leq \alpha_n$. Ceci donne $||f f_n||_{\infty} \leq \alpha_n$, puis : $\lim_{n \to +\infty} ||f_n f||_{\infty} = 0$.

Exemple : CVU de (f_n) avec $f_n:$ $\begin{cases} [0,1] \rightarrow \mathbb{R} \\ x \mapsto (x^2+1)\frac{ne^x+xe^{-x}}{n+x} \end{cases}.$

— On trouve directement $||f_n - f||_{\infty}$ en effectuant une étude de la fonction $x \mapsto f(x) - f_n(x)$ pour trouver ses variations.

Exemple : CVU de (f_n) avec $f_n : \begin{cases} \mathbb{R}_+ \to \mathbb{R} \\ x \mapsto xe^{-nx} \end{cases}$.

- Pour la non convergence uniforme :
 - il suffit de trouver une suite (x_n) telle que $(f(x_n) f_n(x_n))_{n \in \mathbb{N}}$ ne converge pas vers 0. Exemple : non CVU sur \mathbb{R}_+^* de (f_n) , avec $f_n(x) = \frac{n+2}{n+1}e^{-nx^2}\cos(\sqrt{n}x)$, pour $n \in \mathbb{N}$.
 - (f_n) est une suite de fonctions continues CVS vers f qui n'est pas continue. Exemple : pour $n \in \mathbb{N}$, on pose $f_n : x \mapsto x^n$ et on n'a pas CVU de (f_n) sur [0,1].

..3 Théorèmes d'intégration, de continuité et dérivation

Théorèmes	Hypothèses			Conclusion
	Régularité	CV ou intégrabilité	Contrôle	
Continuité	$\forall n \in \mathbb{N}, f_n \in \mathcal{C}^0(I)$		(f_n) CVU sur I ou tout $[a,b] \subset I$	$f = \lim f_n \in \mathcal{C}^0(I)$
Dérivabilité	$\forall n \in \mathbb{N}, f_n \in \mathcal{C}^1(I)$	(f_n) CVS sur I	(f'_n) CVU sur I ou tout $[a,b] \subset I$	$f = \lim f_n \in \mathcal{C}^1(I)$ $f' = \lim f'_n$
Dérivabilité d'ordre supérieur	$\forall n \in \mathbb{N}, f_n \in \mathcal{C}^k(I)$	$(f_n),,(f_n^{(k-1)})$ CVS sur I	$(f_n^{(k)})$ CVU sur I ou tout $[a,b] \subset I$	$f = \lim f_n \in \mathcal{C}^k(I)$ $\forall l \in [0, k] f^{(l)} = \lim f_n^{(l)}$
Double limite		$\forall n \in \mathbb{N}, \lim_{a} f_n = b_n$ $a \in \overline{I}$	(f_n) CVU sur I	$\lim_{a} \lim_{n} f_{n} = \lim_{n} \lim_{a} f_{n}$
Intégration (CV dominée)	$\forall n \in \mathbb{N}, f_n, f \in \mathcal{C}_{pm}(I)$	(f_n) CVS vers f sur I	$\exists \varphi \in \mathcal{L}^1(I), \\ \forall n \in \mathbb{N}, f_n \le \varphi$	$\lim_{I \to \infty} \int_{I} f_{n} = \int_{I} f$ $f \in \mathcal{L}^{1}(I)$
Intégration sur $[a, b]$	$\forall n \in \mathbb{N}, f_n \in \mathcal{C}^0([a,b])$		(f_n) CVU sur $[a,b]$	$\lim \int_{a}^{b} f_n = \int_{a}^{b} \lim f_n$

- **Remarque 1.3.1** 1. On peut adapter le théorème de continuité : on suppose que toutes les fonctions f_n sont continues sur A. Si pour tout a de A, il existe un voisinage V (relatif de A) de a tel que $(f_n|_V)$ converge uniformément vers $f|_V$, alors f est continue sur A tout entier.
 - 2. Pour montrer que la limite f de (f_n) est de classe C^{∞} sur I, il faut appliquer la proposition précédente pour tout k de \mathbb{N}^* et donc il faut vérifier la convergence uniforme sur I (ou sur tout segment inclus dans I) de toutes les suites des dérivées $(f_n^{(k)})_{n\in\mathbb{N}}$ (ou à partir d'un certain rang pour k).

Exemple 1.3.1 Convergence dominé:
$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{1}{1 + t^2 + t^n e^{-t}} dt$$
.

1.4 Exemples classiques d'approximation uniforme

Théorème 1.4.1 ($\mathcal{E}(\lceil a,b \rfloor,\mathbb{K})$) est dense dans $\mathcal{CM}(\lceil a,b \rfloor,\mathbb{K})$) Toute fonction continue par morceaux sur [a,b] est limite uniforme d'une suite de fonctions en escalier sur [a,b].

Théorème 1.4.2 (Weierstrass) Toute fonction continue sur [a,b], à valeurs réelles ou complexes, est limite uniforme d'une suite de fonctions polynomiales sur [a,b].

Exemple 1.4.1 Soit $f:[0,1] \to \mathbb{R}$ une fonction continue telle que $: \forall k \in \mathbb{N}, \int_0^1 x^k f(x) dx = 0$. Alors f = 0.

2 Séries de fonctions

2.1 Modes de convergence d'une série de fonctions

Définition 2.1.1 (Convergence simple d'une série de fonctions) On dit que la série de fonction $\sum f_n$ est simplement convergente sur A et de somme S si pour tout x de A, la série $\sum f_n(x)$ converge et a pour somme S(x).

Autrement dit si on note $S_n: x \mapsto \sum_{k=0}^n f_k(x)$ la somme partielle d'ordre n, alors la suite de fonctions

 $(S_n)_{n\in\mathbb{N}}$ converge simplement vers S, c'est-à-dire : $\forall x\in A$, $\lim_{n\to+\infty}\sum_{k=0}^n f_k(x)=S(x)$.

Dans ce cas, on $a: \forall x \in A, \ S(x) = \sum_{n=0}^{+\infty} f_n(x).$

Définition 2.1.2 (Convergence uniforme) Soit $\sum f_n$ une série de fonction qui converge simplement sur A

La série $\sum_{k=n+1}^{+\infty} f_n$ converge uniformément sur A si et seulement si la suite des restes $(R_n)_{n\in\mathbb{N}}$ (avec $R_n: x\mapsto \sum_{k=n+1}^{+\infty} f_k(x)$) converge uniformément vers 0.

Définition 2.1.3 (Convergence normale) Une série $\sum f_n$ de fonctions est dite normalement convergente si toutes les fonctions f_n sont bornées sur A et $\sum \|f_n\|_{\infty}$ converge.

Proposition 2.1.1 (Implications des modes de convergence)

• La convergence normale implique la convergence uniforme.

• La convergence uniforme implique la convergence simple.

2.2 Méthodes pour montrer les modes de convergence

• Pour la convergence simple (CVS) : on fixe x (que l'on traite comme une constante) et on étudie $\sum_{n\geq 0} f_n(x)$ comme série classique qui dépend de n.

Exemple : convergence et somme de la série de fonctions $S: x \mapsto \sum_{n=0}^{+\infty} x^n \sin(nx) \sin(nx) \sin(nx)$

- \bullet Pour la convergence normale (CVN) :
 - on montre, par des majorations à la main, qu'il existe une série numérique $\sum \alpha_n$ convergente telle que : $\forall n \in \mathbb{N}, \forall x \in A, |f_n(x)| \leq \alpha_n$. En effet, dans ce cas, par définition de la borne supérieure, on a : $\forall n \in \mathbb{N}, \sup_{x \in I} |f_n(x)| \leq \alpha_n$, puis : $\forall n \in \mathbb{N}, ||f_n||_{\infty} \leq \alpha_n$. Ainsi $\sum ||f_n||_{\infty}$ converge.

Exemple : CVN de $\sum_{n>1} \frac{\cos(nx)}{n^2 + x^2}$ sur \mathbb{R} .

— On étudie les variations de $x \mapsto f_n(x)$ pour trouver $||f_n||_{\infty}$, puis on regarde si $\sum ||f_n||_{\infty}$ converge.

Exemple : CVN sur \mathbb{R}_+ de $\sum_{n\geq 1} \frac{x}{1+n^4x^4}$.

• Pour la non convergence normale : Trouver une suite (α_n) tel que $\sum_{n} f_n(\alpha_n)$ diverge.

Exemple: $\sum_{n\geq 1} \frac{x}{1+n^4x^4}$ n'est pas CVN sur \mathbb{R} , avec x=1/n.

• Pour la convergence uniforme (CVU) sans la CVN : il suffit donc de trouver une suite $(\alpha_n)_{n\in\mathbb{N}}$ indépendante de x qui converge vers 0 telle que : $\forall x\in A, |R_n(x)|\leq \alpha_n$.

En effet on aura donc $||R_n||_{\infty} \le \alpha_n$, puis $\lim_{n \to +\infty} ||R_n||_{\infty} = 0$.

Dans ce contexte le critère spécial des séries alternées peut être très pratique, car il donne facilement une majoration des restes.

Exemple : $\sum_{n \ge 1} \frac{(-1)^{n-1}e^{-nx}}{n}$ converge uniformément sur \mathbb{R}_+ .

• Pour la non convergence uniforme : il suffit de trouver une suite (x_n) telle que $(R(x_n))_{n\in\mathbb{N}}$ ne converge pas vers 0.

Exemple : non CVU sur \mathbb{R} de $\sum_{n\geq 1} \frac{nx^2}{n^3+x^2}$.

2.3 Théorèmes d'intégration, de continuité et dérivation

On notera
$$S = \sum_{n=0}^{+\infty} f_n$$
.

Théorèmes	Hypothèses			Conclusion	
	Régularité	CV ou intégrabilité	Contrôle		
Continuité	$\forall n \in \mathbb{N}, f_n \in \mathcal{C}^0(I)$		$\sum_{CVN \text{ sur } I \text{ ou}} f_n \text{CVU ou}$ $\text{cvN sur } I \text{ ou}$ $\text{tout } [a, b] \subset I$	$\sum f_n \in \mathcal{C}^0(I)$	
Dérivation terme à terme	$\forall n \in \mathbb{N}, f_n \in \mathcal{C}^1(I)$	$\sum f_n$ CVS sur I	$\sum_{\text{CVN sur } I} f'_n \text{CVU ou}$ $\text{CVN sur } I \text{ ou}$ $\text{tout } [a, b] \subset I$	$\sum f_n \in \mathcal{C}^1(I)$ $\left(\sum f_n\right)' = \sum f_n'$	
Dérivation d'ordre k terme à terme	$\forall n \in \mathbb{N}, f_n \in \mathcal{C}^k(I)$	$\sum_{\text{CVS sur } I} f_n^{(k-1)}$	$\sum_{\text{CVN sur } I \text{ ou}} f_n^{(k)} \text{CVU ou}$ $\text{cVN sur } I \text{ ou}$ $\text{tout } [a, b] \subset I$	$\sum f_n \in \mathcal{C}^k(I)$ $\left(\sum f_n\right)^{(l)} = \sum f_n^{(l)}, \ l \in \llbracket 0, k \rrbracket$	
Double limite		$\forall n \in \mathbb{N}, \lim_{a} f_n = b_n$ $a \in \overline{I}$	$\sum_{\text{ou CVN sur } I} f_n \text{ CVU}$	$\sum_{n} b_n \text{ converge}$ $\sum_{n} \lim_{n} f_n = \sum_{n} b_n = \lim_{n} (\sum_{n} f_n)$	
Intégration terme à terme cas positif	$\forall n \in \mathbb{N}, f_n, S \in \mathcal{C}_{pm}(I)$ f_n à valeurs dans \mathbb{R}_+	$\sum_{n \in \mathbb{N}, f_n \in \mathcal{L}^1(I)} f_n \text{CVS vers } S$		$\int_{I} \left(\sum_{I} f_{n} \right) = \sum_{I} \int_{I} f_{n}$ $\operatorname{dans} \mathbb{R}_{+} \cup \{+\infty\}$	
Intégration terme à terme	$\forall n \in \mathbb{N}, f_n, S \in \mathcal{C}_{pm}(I)$	$\sum_{\forall n \in \mathbb{N}, f_n \in \mathcal{L}^1(I)} f_n \text{CVS vers } S$	$\sum \int_{I} f_n \text{ CV}$	$\int_{I} \left(\sum f_{n} \right) = \sum \int_{I} f_{n}$	
Primitivation terme à terme sur $[a, b]$	$\forall n \in \mathbb{N}, f_n \in \mathcal{C}^0([a,b])$		$\sum_{\text{CVN sur } [a,b]} f_n \text{CVU ou}$	$\int_{a}^{b} \left(\sum f_{n} \right) = \sum \int_{a}^{b} f_{n}$	

1. Pour montrer qu'une série de fonction est C^{∞} :

- pour tout n, la fonction f_n est de classe C^{∞} sur I. pour tout k de \mathbb{N} , la série $\sum f_n^{(k)}$ converge uniformément ou normalement sur I (ou sur tout segment inclus dans I).

On pose
$$S = \sum_{n=0}^{+\infty} f_n$$
. Alors S est de classe C^{∞} sur I et $: \forall j \in \mathbb{N}, \forall x \in I, \ S^{(j)}(x) = \sum_{n=0}^{+\infty} f_n^{(j)}(x)$.

- 2. Pour géraliser la continuité sur un evn :
 - Si pour tout n, la fonction f_n est continue sur A.
 - Si pour tout a de A, il existe un voisinage V (relatif de A) de a tel que $\sum f_n|_V$ converge uniformément ou normalement.

Alors
$$S = \sum_{n=0}^{+\infty} f_n$$
 est continue sur A .

Exemple 2.3.1 1. Continuité

- Avec la $CVU: g: x \mapsto \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}e^{-nx}}{n}$ est continue $sur \mathbb{R}_+$.
- Avec la CVN: $g: x \mapsto \sum_{i=1}^{+\infty} \frac{x}{1 + n^4 x^4}$ est continue sur \mathbb{R}^* .
- 2. Dérivabilité :
 - $x \mapsto \sum_{n=1}^{+\infty} \left(\ln \left(1 + \frac{x}{n} \right) \frac{x}{n} \right)$ est C^1 sur [0, 1].
 - $\zeta: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^x}$ est de classe C^{∞} sur $]1, +\infty[$.
- 3. <u>Double limite</u>: $\lim_{x \to +\infty} \left(\sum_{n=1}^{+\infty} \frac{x}{1 + n^4 x^4} \right) = 0.$
- 4. Intégration terme à terme : $\int_0^{+\infty} \frac{\sin(t)}{e^{xt} 1} dt = \sum_{t=0}^{+\infty} \frac{1}{1 + n^2 x^2}.$

Remarque 2.3.2 Pour rechercher des équivalents de séries de fonctions, on utilise souvent des comparaisons séries/intégrales.

Exemple : déterminer un équivalent en $+\infty$ de $f: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{x^2 + n^2}$.