Corrigé du DS type CCINP

Q20.

Q21.

type arbre = Vide | Noeud of fraction * arbre * arbre;;

Q22. Si n/d est un noeud du niveau 0, alors n = d = 1 donc n A d = 1. Supposons que tous les noeuds n/d de I’étage k sont tels que
nAd=1. Un noeud de I'étage k + 1 est du type n/(n + d) ou (n+ d)/n avec n/d un noeud du niveau k. Tout diviseur de n et de n+d
est un diviseur de n et de n + d — n = d donc est un diviseur de n et de d donc vaut 1; c’est donc que n A (n + d) = 1 donc que les
noeuds du niveau k + 1 du type n’/d’ vérifient n’ A d’ = 1. Par récurrence, pour tout noeud n/d de 'arbre, on an Ad = 1.

Q23.
let rec pged a b = if a=b then a else if a<b then pgcd a (b-a) else pgcd (a-b) b;;

Q24.

let fraction n d = if (n<0 && d>0) || (n>0 && d<0) then failwith "erreur de signe";
if n>=0 &% d>0 then let g=pgcd n d in {n=n/g; d=d/g}
else let g=pgcg (-n) (-d) in {n=-n/g; d=-d/g};;

Q25. Supposons que ces noeuds ont le méme fils gauche. Alors k/(k+1) = n/(n+d) donc k(n+d) = n(k+1). Comme nA(n+d) =1
et n+ d divise n(k +1), n+ d divise k + . De méme, n divise k(n+d) et n An+d =1 donc n divise k. Par symétrie des roles de (n, d)
et (k,1), k divise n et k+ [ divise n +d. On a donc k =n et k+1=n+d donc k = n et | = d. Supposons que ces noeuds ont le méme
fils droit. Alors (n+d)/d = (k+1)/l donc (k+1)d = (n+ d)! donc d divise (n + d)I donc, étant premier avec n + d, d divise [ et (n + d)
divise (k + l)d donc, étant premier avec d, n + d divise k + [ ; par symétrie, k + I divise n + d et [ divise d donc d = [ puis n = k.

Q26. Supposons que N = n/d avec n A d = 1. Le fils gauche de N est n/(n + d) = n/d N Qoit k € NN tel que le noeud
n/d+1 N+1
N

provenant d’une suite de k fils gauches de N est TN = ﬁ et n A (d+ kn) = n Ad = 1. Le fils gauche de ce noeud est donc
n/d

T = TThtmyd = 1+(k]\Jfr1)N donc le noeud issu de k + 1 fils gauches issus de N est N/(1+ (k + 1)N). Par récurrence le noeud
issu de k fils gauches de N est N/(1 + kN).

Le noeud issu d’une suite de k fils droits est N + k.

Q27.v9=0,v1 =1,v2 =1/2,v3 =2, v4 =1/3, v5 = 3/2, v = 2/3, v7 = 3 (et vg = 1/4 si 'on demande les huit premiers termes a
partir du rang 1).

Q28. Supposons que n+d = 2. Alorsn =d =1 et n/d = 1 est la racine de l’arbre. Soit N > 2. Supposons que, pour tout n,d premiers
entre eux tels que n + d < N, n/d apparait. Supposons que n + d = N + 1. Supposons que n > d. Posons k =n — d et [ = d. Alors
k+1=mn<n+d= N+ 1. Par hypothése de récurrence, k/l apparait dans I’arbre donc a pour fils droit (k + )/l = n/d donc n/d
apparait dans ’arbre. Supposons que n < d. Posons I =d—net k=n. Alors k+!l=d <n+d = N + 1 donc k/I apparait dans ’arbre
et a pour fils gauche k/(k + 1) = n/d donc n/d apparait dans I’arbre. Si n = d alors, comme nAd =1, n = d =1 donc n/d est la racine
de l'arbre.

Par récurrence, pour tout n,d premiers entre, n/d apparait dans l’arbre.

Q29. Soit n,d premiers entre eux. Sin = d, n = d = 1 donc n/d est la racine de ’arbre donc n’apparait qu’une fois. Soit N > 2.
Supposons que, si n+d < N, n/d n’apparait qu’une fois. Supposons que n/d = N + 1. n/d # 1 donc n/d n’est pas la racine donc a un
pére k/l. Onadoncn=ketd=k+loun=k+1etd=1I Deplus, n# d (sinon n =d = 1). Supposons que n < d. Alors k =n
et d=k+ 1. Comme k + 1 < N, k/l n’apparait qu'une fois donc n/d n’apparait qu’'une fois (comme fils gauche de k/I). Supposons que
n >d. Alors n = k+1 et d =1. Comme k/l n’apparait qu’une fois (puisque k + 1 < N), n/d n’apparait qu’'une fois (comme fils droit de
k/l).

Par récurrence, pour tout n,d premiers entre eux, n/d n’apparait qu’une fois dans I’arbre.

Q30. Soit ¢ € Q4. Si ¢ =0, g =vp. Si ¢ > 0, il existe un unique (n,d) € (IN*)2 tels que n Ad = 1 et ¢ = n/d. D’aprés les questions
28 et 29, n/d n’apparait qu’une seul fois dans l’arbre donc il existe un unique 7 € IN* tel que ¢ = v;. Ceci prouve que (v;);cN est une
bijection de IN dans Q.

Q31. Montrons, par récurrence sur k € IN, que les noeuds de profondeur k vont de 2% 4 25¥1 — 1. Le noeud de profondeur 0 est indexé
par 1 =29 = 20+1 _ 1, Supposons que les noeuds de profondeurs k € IN vont de 2% a 28+ — 1. Les noeuds de profondeur k + 1 sont en
nombre double de celui de profondeur k. Il y en a donc 2 x (2F+1 —1 — 2% 4+ 1) = 2 x 2% = 2#+1. Comme ils sont indexés & partir de
2k+1 ils sont indexés de 2k 3 2k+1 4 9k+1 _ 1 — 9k+2 _ 1 (Ceci prouve, par récurrence, que les noeuds de profondeur k sont indexés
de 2F 3 2k+1 1.

Soit k& une profondeur fixé. Les fils du premier noeud de profondeur k sont les deux premiers noeuds de profondeur k£ + 1 : les fils du
noeud d’indice 2¥ sont en indice 21 et 26+1 4 1, c’est-a-dire 2 x 2% et 2 x 2% + 1. Supposons qu’un noeud de profondeur k d’indice
i < 2kt1 _ 1 a ses fils d’indice 2i et 2i + 1. Les fils de son voisin i 4+ 1 sont les deux voisins qui suivent 2i 4+ 1; les fils du noeud d’indice
i+ 1 sont donc 2i + 2 et 2¢ + 3 c’est-a-dire 2(¢ + 1) et 2(¢ + 1) + 1. Par récurrence, pour toute profondeur k, pour tout noeud i de
profondeur k, les fils de ce noeud ont pour indice 2i et 2¢ + 1.

Q32.50=0,81=1,89 =51 =1,83 =81 +82=2,8, =82=1,85 =s2+583 =3,8 =83 =2,8 =83+84 =3,8 =84 =1,
S9 = S84 + s5 = 4.

Q33.

let rec stern i = if i<=1 then i else if i mod 2=0 then stern (i/2) else let k=i/2 in stern k + stern (k+1);;



Q34. v9 =0 = :—‘1’ etv; =1= :—; et s A s1 = s1 A s2 = 1. Soit n € IN. Supposons que, pour tout i < n, v; = 521 et s; Asjt+1 = 1.

Supposons que n + 1 est pair : n + 1 = 2k. D’aprés la question 31, vp4+1 = vgr est la valeur du noeud qui est le fils gauche du
noeud qui a la valeur vy ; par hypothése de récurrence vy = S:il et sp A sgy1 = 1. On en déduit que vg = Skfﬁ = S;fﬁ; en
outre, soi A S2k4+1 = Sk A (Sk + Sg41) = S A sp41 = 1. Supposons que n + 1 est impair :n+ 1= 2k+ 1. D’aprés la question 31,
Un41 = V2k+1 est la valeur du noeud qui est le fils droit du noeud qui a la valeur vy, = 5k+ donc vop41 = % = Z’;ﬁ ; en outre
S2k+1 A S2k+2 = (Sk + Sk+1) A Sk4+1 = Sk A sSg+1 = 1. Ceci prouve, par récurrence, que, pour tout i € IN*, v; = 521 (et si Asjy1 =1).
Q35. Dans ce cas, i = 2k, v; = 5 est le fils de k/l avec k+1 =d, k = ndonc !l = d—n et vit1 = kTH = ";ﬁ;" = ﬁ donc
“:%—1 =1- ﬁ =1—v;. En outre, 0 <n < d donc 0 < v; < 1 donc |v;] =0. On a donc vll =1+ 2[v;| —v; donc vi41 = f(v;).

Q36. Dans ce cas, v; est une succession de fils droits et est & profondeur k; d’aprés la questlon 26, v; = 1 4 k. Son successeur est la

succession de fils gauche et est & profondeur k + 1. D’aprés la question 26, v; 1 = 1+I£+1 = m Remarquons que f(v;) = f(1+ k) =

1+2Lk+1j7k71 = 1+k+1 = Vit1-
Q37.

let rec chemin f = if n.f=d.f then [f] else
if n.f<d.f then rev (G::(chemin {n=n.f;d=d.f-n.f}))
else rev (D::(chemin {n=n.f-d.f;d=d.f}));;

Q38.
let noeud 1 = let rec aux f 1 = match 1 with

IO ->£;;

| G::q -> aux {n=n.f; d=n.f+d.f} q

| D::q -> aux {n=n.f+d.f; d=d.f} q in aux {n=1;d=1} 1;;
Q39.

let ancetre f1 f2 =
let rec aux 11 12 = match 11,12 with
I 0, ->10
| _,0 >0
| t1::q91,t2::92 -> if t1=t2 then t1l::(aux ql q2) else []
in let cl=chemin f1 and c2=chemin f2 in let c=aux cl c2 in
noeud c;;

Q40. Le chemin de vp & v; est [G; D;---; D]. Celui de vp & vi41 est [D; G;-- -5 G].
Q41. Supposons que v, = n/d. Alors le fils gauche de vy, est n/(n+ d). En vertu de la question 26, le successeur de k' — 1 fils droits est
ntd

nLer + k' — 1. Le fils droit de vp est "Ter En vertu de la question 26, le successeur de k' — 1 fils gauches est On a donc

d
1+(k/—1) 2"

 Comme [v] = k' =1, 142|v;] —v; = 142K —2— 25—k +1 = k' — 1o = K/ —1+4 45 = oL

S _n_ ’_ =1
Vi = n+d+k Letvis = %ﬁ+k’—1

donc v;41 = m = f(vi).

Partie 2 (sujet 2014)

Question III. 1

L’appel "tri exemple" va créer appel "selection exemple" qui va appeler "aux 3 [1;4;2]". Le programme va ensuite calculer "(m,r)=aux
1 [4;2]" et renvoyer "(m,3 : :r)". Or "aux 1 [4;2]" calcul "(m0,r0)=aux 1 [2]" et renvoie "(m0,4 : :r0)". Enfin, "aux 1 [2]" calcule "aux
1 []" qui est (1,[]) et renvoie (1,[2]). Par conséquent aux 1 [4;2] renvoie (1,[4,2]), puis aux 3 [1;4;2] renvoie (1, [3;4;2]). Ainsi, "selection
exemple" renvoie (1,[3;4;2]). La fonction "tri" va ensuite calculer "selection [3;4;2]|", résultat auquel elle ajoutera 1 en téte de liste. Or
"selection [3;4;2]" va appeler "aux 3 [4;2]" puis "aux 3 [2]" puis "aux 2 [|" qui renvoie (2,[]), ce qui crée le renvoi, pour "aux 3 [2]" de
(2,[3]), qui crée ensuite le renvoi pour "aux 3 [4;2]" de (2,[4 :3]).

La fonction "tri [4;3]|" va alors appeler "selection [4;3|" qui va appeler "aux 4 [3]" puis "aux 3 [|" qui renvoie (3,[]) puis (3,[4]).

La fonction "tri [4]" va alors appeler "selection [4]" qui appelle "aux 4 [|" qui renvoie (4,]]).

Ainsi, le dernier appel de "tri" renvoie [4], le précédent renvoie [3;4], celui d’avant [2;3 ;4] et I’appel intial renvoie [1;2;3;4].
Question III. 2

Montrons, par récurrence sur la taille de la liste a =< a1, ---,ap >, que "aux c a" renvoie un couple (m,r) tel que, en notant
r=<Tr1,,Tm >,

(i) V1 <4 < p, §(a;, m) + card(ai,r) = §(a;, c) + card(a;,a) et 6(c,m) + card(c,r) = 1 + card(c, a).

(ii) m = p.

({ii)vVi<i<m,m<r;etm<ec
Si a est la liste vide, r est la liste vide, donc m = p = 0. Comme p = 0, les débuts des propriétés (i) et (iii) sont des tautologies pour
1 <i<p;deplus, on a bien m < c¢=m et §(¢,m) + card(c,r) =140 =1+ card(c,a).

Supposons le résultat pour toute liste de taille p. Soit a =< a1, ,ap41 >. On étudie la fonction "aux c t : :q"

Notons ¢ =< a2, -+ ,apt1 et t = ay.

Supposons que ¢ < ¢t = aj. Alors on pose (m0,r0)=aux c¢ q. Par hypothése de récurrence, la taille de r0 est celle de q, a savoir p. On
note 70 =< ro, -+ ,rpy1 >.

Onaalorsm=m0et r=1t:r0=<ai,re,---,rptr1 >;0nposer; =air etonar=<ry, - ,rpr1 >.

La taille de 7 est donc m = p 4+ 1 qui est la taille de a, d’ou la propriété (ii).

Par hypothése de récurrence, V2 < i < p+ 1, m < r;. En outre, m < t = a1 = r1. On a donc (iii).

Par hypothése de récurrence, V2 < ¢ < p + 1, 6(a;, m) + card(a;,70) = 6(ai, c) + card(ai,q) et 6(c,m) + card(c,r) = 1 + card(c, a).
Or card(ai,r) = §(ai,a1) + card(a;, r0) et card(ai,a) = 6(a;,a1) + card(a;,q) donc 6(a;, m) + card(a;,r) = §(a;,m) + 6(a;,a1) +



card(a;,r0) = §(ai,m) + card(ai,r0) + §(a;,a1) = (a4, c) + card(ai,q) + 6(as,a1) = 6(a;,c¢) + card(a;,a). Enfin, par hypothése de
récurrence, §(c, m) + card(c, r0) = 1+ card(c, q) donc §(c, m) + card(c,r) = §(c, m) 4+ 6(c, a1) + card(c,r0) = 1+ 6(c, a1) + card(c, q) =
1+ card(c,a). On a donc (i).

Ceci prouve (i), (ii) et (iii) pour le cas ¢ < t = aj.

Supposons désormais que ¢ > aj. On pose alors (m,r0)= aux t q et r=c : :r0. Par hypothése de récurrence, la taille de r0 est celle de q
donc p. Notons r0 =< ra,- -+ ,7p41 >. La taille de r est donc 1 + p qui est la taille de a; on a donc (ii).

Par hypothése de récurrence, V2 < i <p+1, m < a; et m <t =a; donc V1 <4 <t 1, m < a;. En outre, m < a; < ¢. On a donc (iii).
Enfin, par hypothése de récurrence, V2 < i < p+1, 6(a;, m)+ card(a;, r0) = d(a;, t) + card(a;, q) ; or card(a;,r) = card(ai,r0)+ §(ai, c)
et card(ai,a) = card(a;, q) + §(a;,t); donc §(a;, m) + card(a,r) = 6(a;, m) + card(a;, r0) + &(a;,c) = §(a;,t) + card(ai;, q) + 6(a;,c) =
card(a;, a) + 6(aq, ¢). Par hypothése de récurrence, on a aussi 6(t, m) + card(t,r0) = 1+ card(t,q). On a donc §(a1, m) + card(ai,r0) =
1+ card(t,q) donc (a1, m)+ card(ai,70)+ (a1, c) = 1+card(a1, q) + (a1, c) donc 6(ar, m)+card(a1,r) = card(ai,a)+ (a1, c). Pour
finir, on a §(¢, m)+card(c,r) = §(c, m)+card(c, r0)+d(c, ¢) = 6(c, m)+card(c,r0)+1; par hypothése de récurrence card(c, 70)+d(c, m) =
card(c,q) + (¢, t) ; on a donc 6(c, m) + card(c,r) = card(c,q) + 6(c,t) + 1 =1+ card(c, a). Ceci prouve (iii).

Ceci prouve (i), (ii) et (iii) dans le cas ¢ >t = a1.

On a donc bien prouvé les propriétés (i), (ii) et (iii) pour la fonction aux.

Passons 4 la fonction "selection". Si s=t : :q, cette fonction applique aux t q. Notons a =< s1,--+ ,sp, >. On a donc ¢ =< sg2,--- , Sp,
Notons (m,r)=aux t g=selection s. On note r =< ry,--- ,r, >. D’aprés ce qui précéde, (ii) p =n — 1 donc n = p+ 1 ce qui est (b).
D’aprés ce qui précede, V2 < i< n, m < a; et m < t=az. donc (c).

D’aprés ce qui précéde, V2 < i < n, d(s;, m) + card(s;,r) = d(s;4,t) + card(s;,q) donc 6(s;, m) + card(s;,r) = card(s;,s). En outre,
toujours d’aprés ce qui précéde, §(t, m) + card(t,r) = 1 + card(t, q) donc é(a1, m) + card(ai,r) = 1+ card(a1,q) = card(ai,s). On a
donc (a).

Ceci prouve (a), (b) et (c) pour toute liste non vide s.

Question III. 3

Si s est la liste vide, la liste r est vide. Les trois propriétés sont dans ce cas triviales.

Supposons que ces trois propriétés soient vraies pour toute liste de taille au plus n. Soit une liste s de taille n + 1. On note
(m0,sp)=selection s.

D’aprés la question précédente, s étant de taille n + 1, sp est de taille n +1 — 1 = n; par hypothése de récurrence, rp est de taille n
donc la liste r=m0 : :tp est de taille 1 +n. On a donc (a).

De plus, par hypothése de récurrence, pour tout 1 < i < m, card(s;, sp) = card(s;,rp); d’aprés la question précédente, §(s;, m0) +
card(si, sp) = card(si, s). En outre, comme r=m0 : :rp, card(s;,r) = 6(s;, m0) + card(s;, rp) = §(s;, m0) + card(si, sp) = card(s;, s).
Ceci prouve (b).

Enfin, r = m0 :: rp =< m,rg,--- ,rp41 >. Par hypothése de récurrence, pour tout 2 <i <n+1, r; < rjyq. D’aprés le point (c) de la
question précédente, m0 < r; pour tout 2 <4 < n. On a donc, en notant r1 = m0, pour tout 1 <i<n+1, 7 <7igpq.

Ceci prouve, par récurrence sur la longueur d’une liste, que les trois propriétés sont vérifiées.

Question III. 4

La fonction "aux" se termine pour une liste vide et pour une liste non vide effectue un appel récursif sur une liste de taille un de moins.
Par conséquent, cette fonction se termine.

La fonction "selection" s’arréte donc sur une liste non vide.

La fonction "tri" s’arréte pour une liste vide; pour une liste non vide, elle appelle la fonction "selection" qui se termine bien pour une
liste non vide, et effectue un appel récursif sur une liste de taille un de moins. Par conséquent, la fonction "tri" va bien se terminer sur
une liste quelconque.

Question III. 5

La fonction "aux" effectue sur une liste non vide un appel récursif sur une liste de taille un de moins. Par récurrence, la fonction "aux"
effectue n appels récursifs ou n est la taille de la liste.

La fonction "selection" effectue donc un nombre d’appels a la fonction "aux" égal a la taille de la liste.

La fonction "tri" effectue, sur une liste non vide, un appel récursif sur une liste de taille un de moins que la liste initiale. Ainsi, la
fonction "tri" effectue un nombre d’appels récursifs égal a la taille de la liste.

La fonction "tri" fait appel n fois a la fonction "selection" qui fait appel n fois & "aux", puis n — 1 fois & "aux"... Au total, on a donc

>.

3 (n+1)
> k appels récursifs, a savoir = = O(n?).
k=1
Question III. 6
Vn € N(a), X(n) >0, Y(n) >0, T(n).

.Yd € D(a), pour tout fils f de d, T(f) = @‘

d € D(a), X(fs0) = X(d), Y(fso) = V(d), X(fsp) = X(d) + TE, Y(fsp) = Y(d), X(fxo) = X(d), Y(fsr) = Y(d) + T52,
X(fyp) = X(d) + @, V(fng) =Y(d) + @.

.Vd € D(a), 3f1, f2 deux fils de d tels que In1 € B(f1), n2 € B(f2), tels que C(n1) # C(n2).

Question III. 7

let scinder a = match a with
| Division(_,_,_,_,_,_,_) -> a
| Bloc(x,y,t,c) -> Division(x,y,t, Bloc(x,y,t/2,c), Bloc(x+t/2,y,t/2,c), Bloc(x,y+t/2,t/2,c), Bloc(x+t/2,y+t/2,t+2,c));;

Question III. 8

let fusionner so se no ne = match so,se,no,ne with
| (Bloc(x,y,t,cl), Bloc(_,_,_,c2), Bloc(_,_,_,c3), Bloc(_,_,_,c4)) when cl=c2 && c2=c3 && c3=c4 -> Bloc(x,y,2*t,cl)
| (Bloc(x,y,t,_),_,_,_) -> Division(x,y,2*t,so,se,no,ne)

| (Division(x,y,t,_,_,_,_)>_s_,_) -> Division(x,y,2%t,so,se,no,ne);;
Question III. 9

let rec profondeur a = match a with
| Bloc(_,_,_,_) -> 0



| Division(_,_,_,so0,se,no,ne) -> 1+ max (max (profondeur so) (profondeur se)) (max (profondeur no) (profondeur ne));;
Question III. 10

let rec consulter x y a = match a with
| Bloc(_,_,_,c) -> c
| Division(x0,y0,t,so,_,_,_) when x<x0+t/2 && y<yO+t/2 -> consulter x y so
| Division(x0,y0,t,_,se,_,_) when x>=x0+t/2 && y<yO0+t/2 -> consulter (x-t/2) y se
| Division (x0,y0,t,_,_,no,_) when x<x0+t/2 && y>=yO0+t/2 -> consulter x (y-t/2) no
| Division(x0,y0,t,_,_,_,ne) -> consulter (x-t/2) (y-t/2) ne;;

Question III. 11

let rec peindre x y ¢ a = match a with
| Bloc(_,_,t,_) when t=1 -> Bloc(x,y,t,c)
| Bloc(_,_,_,c0) when c=cO0 -> a
| Bloc(x0,y0,t,_) -> peindre x y ¢ scinder a
| Division(x0,y0,t,so,se,no,ne) when x<x0+t/2 && y<y0+t/2 -> fusionner (peindre x y c so) se no ne
| Division(x0,y0,t,so,se,no,ne) when x>=x0+t/2 && y<y0+t/2 -> fusionner so (peindre x y ¢ se) no ne
| Division (x0,y0,t,so,se,no,ne) when x<x0+t/2 && y>=y0+t/2 -> fusionner so se (peindre x y c no) ne
| Division(x0,y0,t,so,se,no,ne) -> fusionner so se ,no (peindre x y c ne);;

Question III. 12

let rec valider a =
let rec abs a = match a with
| Bloc(x,_,_,_) -> x
| Division(xX,_,_,_,_,_,_) -> X
and ord a = match a with
| Bloc(_,y,_,_.) >y
and taille a = match a with
| Bloc(_,_,t,.) ->t
| Division(_,_,t,_,_,_,_) -> t
in match a with
| Bloc(x,y,t,c) -> (x>0)&&(y>0)&&(t>0)
| Division(_,_,_, Bloc(_,_,_,cl1), Bloc(_,_,_,c2), Bloc(_,_,_,c3), Bloc(_,_,_,c4)) when cl=c2 && c2=c3 && c3=c4 -> false
| Division(x,y,t,so,se,no,ne) -> (x>0)&&(y>0)&&(t>0)&&(x=abs so)&&(y=abs so)&&(t/2=taille so)&&(x+t/2=abs se)&&(t/2=taille se)&&

Question III. 13

let sauvegarder a =
let rec aux a i = match a with
| Bloc(x,y,t,c) -> ([(i,e)],1)
| Division(x,y,t,so,se,no,ne) ->
let (11,t1)=aux so i in let (12,t2)=aux se (i+tl) in let (13,t3)=aux no (i+t1+t2) in let (14,t4)=aux ne (i+t1+t2+t3)
in( 11 @ 12 @ 13 @ 14, t1+t2+t3+t4)
in fst(aux a 1);;

Question III. 14

let restaurer s =

let rec aux 1 x y t = match (1,t) with
| (i,c)::q when t=1 -> (Bloc(x,y,t,c),q)
| (1,t) -> let (so,ql)=aux 1 x y (t/2) in let (se,g2)=aux ql (x+t/2) y (t/2)
in let (no,g3)=aux q2 x (y+t/2) t/2 in let (ne,q4)=aux g3 (x+t/2) (y+t/2) (t/2)
in (fusionner so se no ne , q4)

and racine n = match n with
| 1 ->1
| _ -1 2*racine(n/4)

in fst(aux s 1 1 (racine (List.length s)));;



