Etude d'un solide en translation

- Le mouvement est entièrement caractérisé par le mouvement du barycentre G: lorsque le solide est en translation dans R: $\forall M \in S$, $\overrightarrow{v(M)} = \overrightarrow{v(G)}$
- L'élément cinétique utile pour l'étude de la translation est la quantité de mouvement de S

$$dans \; R: \; \overrightarrow{p} \mathop{=}_{\substack{\text{description} \\ \text{discrete}}} \sum_{\substack{M_i \in S}} m_i \, \overrightarrow{v(M_i)} \mathop{=}_{\substack{\text{description} \\ \text{continue}}} \iiint_{M \in S} dm. \overrightarrow{v(M)} \mathop{=}_{\substack{\text{definition} \\ \text{de} G}} m_{TOT} \, \overrightarrow{v(G)}$$

• L'élément dynamique utile est la résultante des actions extérieures :

$$\overrightarrow{F_{ext}} = \iiint\limits_{\substack{M \in S \\ S: solide}} d\overrightarrow{F_{ext}}\left(M\right) \text{ (force à distance)} + \iint\limits_{\substack{M \in \Sigma \\ \Sigma \text{ délimitant } S}} d\overrightarrow{F_{ext}}\left(M\right) \text{ (force de contact)}$$

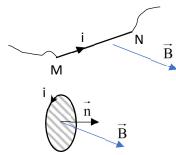
Force infinitésimale appliquée à un volume dt de S autour de M

Force infinitésimale de contact appliquée à une surface $d\Sigma$ de Σ autour de M

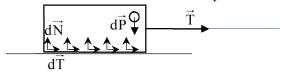
Exemple: le poids $\vec{F} = m_{TOT} \vec{g}$

les action de contact sur un support : $\vec{F} = \vec{N} + \vec{T}$ la tension d'un fil ou d'un ressort qui serait attaché à S les actions inertielles si le référentiel R est non galiléen Les actions de Laplace sur un circuit plongé dans \vec{B} uniforme :

tige rectiligne MN parcourue par un courant $i: \vec{F} = i \overrightarrow{MN} \wedge \vec{B}$ circuit filiforme fermé (de forme quelconque) : $\vec{F} = \vec{0}$



Attention, on ne peut a priori pas attribuer de point d'application à \vec{F} : il s'agit de la résultante d'action continument répartie dans S ou à la surface de Σ (délimitant S) ... sauf pour les action de contact appliquées sur une zone quasiponctuelle de Σ , comme la tension d'un fil attaché à S « en un point ».



• Le théorème dynamique utile est le théorème du centre de masse (aussi appelé, théroème du centre d'inertie ou de la résultante dynamique : $\boxed{\frac{d\vec{p}}{dt} = m_{tot} \, \overline{a(G)} = \overline{F_{ext}}}$

Interprétation : le mouvement de G est celui qu'aurait un point matériel de masse m_{tot} situé en G et soumis à $\overrightarrow{F_{ext}}$

• Aspects énergétiques

Cas général : $\frac{dE_c}{dt} = P_{ext} + P_{int}$ où P_{int} est lié à la déformation du système

Dans le cas du solide indéformable $P_{int} = 0$ et

$$\frac{dE_{c}}{dt} = P_{ext}$$

$$avec E_{c} = \frac{1}{2}m_{tot}v(G)^{2} et P_{ext} = \overrightarrow{F_{ext}}.\overrightarrow{v(G)}$$

Démonstration
$$E_c = \iiint_{M \in S} \frac{1}{2} dm. \underbrace{v(M)^2}_{=v(G)^2 \ \forall M \atop (translation)} = \frac{1}{2} \left(\iiint_{M \in S} dm \right) . v(G)^2 = \frac{1}{2} m_{tot} v(G)^2$$

$$P_{\text{ext}} = \iiint\limits_{M \in S} \overrightarrow{dF_{\text{ext}}}\left(M\right).\underbrace{\overrightarrow{v(M)}}_{=\overrightarrow{v(G)} \ \forall M} = \frac{1}{2} \left(\iiint\limits_{M \in S} \overrightarrow{dF_{\text{ext}}}\left(M\right)\right).\overrightarrow{v(G)} = \overrightarrow{F_{\text{ext}}} \overrightarrow{v(G)}$$
(translation)

Les actions conservatives sont celles qui vérifient :

Pour tout déplacement élémentaire $d\overrightarrow{OG}$ ou $d\overrightarrow{r_G}$ du barycentre G le travail élémentaire se met sous la forme $\delta W = -dE_p(\overrightarrow{r_G})$ où $E_p(\overrightarrow{r_G})$ est un champ scalaire dépendant de la position $\overrightarrow{r_G}$ de G

$$Exemple: le \ poids \ \delta W = \underset{M \in S}{\iiint} \delta m. \overrightarrow{g} d\overrightarrow{OM} = \overrightarrow{g}. d \underbrace{\left(\underset{M \in S}{\iiint} \delta m. \overrightarrow{OM}\right)}_{m_{tot} \overrightarrow{OG}} = m_{tot} \overrightarrow{g}. d\overrightarrow{OG} = -m_{tot} g. dz_g \ \ (en$$

coordonnées cartésiennes avec Oz vertical ascendant). On obtient donc $E_{ppes} = m_{tot}g.z_g + cst$

Le TEC peut se réécrire :
$$\frac{d}{dt} \left(E_c + E_p \left(\overrightarrow{r_G} \right) \right) = P_{\text{actions} \atop \text{non conservatives}}$$

Le TEC est particulièrement efficace dans le cas d'un système conservatif évoluant à un degré de liberté : il donne à lui seul l'équation du mouvement

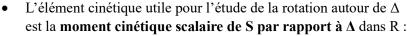
Etude d'un solide en rotation autour d'un axe fixe Δ

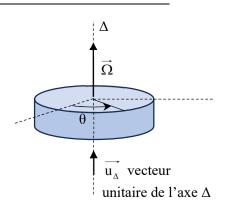
Le mouvement est entièrement caractérisé par un angle θ de rotation autour de l'axe Δ à partir duquel on construit le **vecteur**

rotation de
$$S: \overrightarrow{\Omega} = \overset{\bullet}{\theta} \overrightarrow{u_{\scriptscriptstyle \Delta}}$$
 noté ensuite $\overrightarrow{\omega u_{\scriptscriptstyle \Delta}}$

On a alors
$$\forall M \in S, \ \overrightarrow{v(M)} = \overrightarrow{\Omega} \wedge \overrightarrow{OM}$$
 avec $O \in \Delta$

Et plus généralement
$$\forall A, B \in S$$
, $\overrightarrow{v(B)} = \overrightarrow{v(A)} + \overrightarrow{\Omega} \wedge \overrightarrow{AB}$





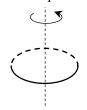
$$\boxed{L_{\Delta} = \overrightarrow{L_{O \in \Delta}}.\overrightarrow{u_{\Delta}} \underset{\substack{\text{description} \\ \text{discrete}}}{=} \left(\sum_{M_i \in S} \overrightarrow{OM_i} \wedge m_i \overrightarrow{v(M_i)} \right).\overrightarrow{u_{\Delta}} \underset{\substack{\text{description} \\ \text{continue}}}{=} \left(\iiint_{M \in S} \overrightarrow{OM} \wedge dm.\overrightarrow{v(M)} \right).\overrightarrow{u_{\Delta}} = J_{\Delta} \omega \right|}$$

$$avec \boxed{ J_{\Delta} \mathop{=}_{\substack{\text{description} \\ \text{discrète}}} \sum_{M_i \in S} m_i r_i^2 \mathop{=}_{\substack{\text{description} \\ \text{continue}}} \iiint_{M \in S} dm.r^2} \\ \text{où } r = HM \; ; \; H \; \text{\'etant le projet\'e orthogonal de } M \; \text{sur } \Delta \\ }$$

Remarques

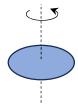
- o L_△ est indépendant du point O choisi pour le calcul
- J_{Δ} est le moment d'inertie de S par rapport à Δ
- J_Δ traduit la répartition des masses autour de l'axe de rotation ; sa valeur sera toujours donné dans l'énoncé

Exemples



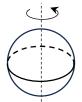
Cerceau (rayon R, masse m)

 $J_{\Delta} = mR^2$



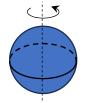
Disque ou cylindre plein (R, m)

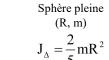
$$J_{\Delta} = \frac{1}{2} mR^2 \qquad J_{\Delta} = \frac{2}{3} mR^2$$

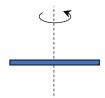


Sphère creuse (R, m)

$$J_{\Delta} = \frac{2}{3} mR^2$$







(longueur L, masse m)

$$J_{\Delta} = \frac{1}{12} \text{mL}^2$$

- Bien que les calculs de J_{Δ} soient HP, il faut connaître les résultats suivants : D'après sa définition $J_{\Lambda} > 0$ et $\dim(J_{\Lambda}) = ML^2$
 - Si toutes les masse de M sont à la même distance de Δ : $J_{\Delta} = mR^2$ (ex cerceau)
 - Si S est caractérisé par un rayon maximal R alors $J_{\Delta} = \alpha mR^2$ avec $0 \le \alpha \le 1$ (et α est d'autant plus proche de 1 que la masse est répartie en périphérie de Δ)

• L'élément dynamique utile est le moment résultant des actions extérieures par rapport à

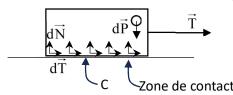
$$\begin{split} M_{\text{ext }\Delta} &= \overrightarrow{M_{\text{ext, }O \in \Delta}}.\overrightarrow{u_{\Delta}} \\ \text{où} & \overrightarrow{M_{\text{ext, }O \in \Delta}} = \underset{S: \text{solide}}{\iiint} \overrightarrow{OM} \wedge d\overrightarrow{F_{\text{ext}}} \Big(M \Big) \text{ (force à distance)} + \underset{\sum \atop{M \in \Sigma}}{\iint} \overrightarrow{OM} \wedge d\overrightarrow{F_{\text{ext}}} \Big(M \Big) \text{ (force de contact)} \end{split}$$

• Glisseur

Propriété : Lorsque $\exists C \in S / \overrightarrow{M_{action,C}} = \overrightarrow{0}$ on montre que $\exists A, \overrightarrow{M_{action,A}} = \overrightarrow{AC} \land \overrightarrow{F_{action}}$ et pour tous les calculs, cette action mécanique de force résultante $\overrightarrow{F_{action}}$ est équivalent à une force unique $\overrightarrow{F_{action}}$ appliquée en C (on parle alors de glisseur pour qualifier le torseur mécanique associé à cette action)

Exemples:

- est équivalent à une force unique $m_{tot} \vec{g}$ appliqué en G (alors que le poids est une force volumique qui s'applique en chaque point de S)

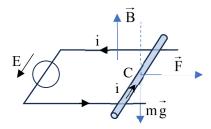


Les actions de Laplace sur un circuit rectiligne
 MN plongé dans B uniforme

F_{Laplace} =
$$\overrightarrow{iMN} \wedge \overrightarrow{B}$$
 et $\overrightarrow{M_{C, Laplace}} = \overrightarrow{0}$

C milieu de [MN]

Les actions de Laplace sont ici équivalentes à une force unique $i \overrightarrow{MN} \wedge \overrightarrow{B}$ appliquée en C



Couple

Les actions mécaniques constituent un couple si $\overline{\overline{F_{action}}} = \vec{0}$ et $\exists A \in S \, / \, \overline{M_{action,A}} \neq \vec{0}$

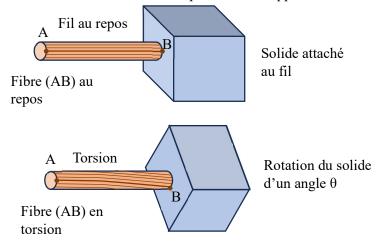
Le moment associé à ces actions mécaniques est alors indépendant du point où le calcul et on le notera simplement $\overrightarrow{M_{action}}$ ou \overrightarrow{M} et que l'on appellera parfois un peu abusivement « couple »

exemple : les actions de Laplace exercées sur un circuit fermé (de forme quelconque) :

Autres actions

- O Actions de liaison avec un bâti. Lorsque la liaison (pivot ou rotule) qui permet la rotation autour de l'axe Δ est « parfaite », elle ne s'oppose en rien à la rotation autour de Δ et son moment par rapport à Δ est nul : M_{Δ , liaison parfaite = 0.
 - Attention, la résultante des action de liaison n'est jamais nulle! peu importe que cette liaison soit parfaite ou non. Cette résultante est toujours totalement inconnue.
- O Actions associés à un fil de torsion : lors d'une torsion d'angle θ autour de l'axe Δ du fil : $M_{\Delta, torsion} = -C\theta$

Attention, la résultante des ces actions n'est pas nulle et s'appelle la tension du fil



• Théorème utile de la dynamique : théorème du moment cinétique scalaire par rapport à

$$\Delta: \boxed{\frac{dL_{_{\Delta}}}{dt} = J_{_{\Delta}} \frac{d^2\theta}{dt^2} = M_{_{\Delta,ext}}} \ \ \, y \ \, compris \ \, les \ \, forces \ \, d'inertie si \ \, le \ \, référentiel est non galiléen.$$

La seule inconnues cinématique est l'angle θ repérant le solide S dans sa rotation autour de Δ .

- Aspect énergétique $dE_c \over dt = P_{ext} + P_{int}$ avec pour un solide indéformable $P_{int} = 0$ $P_{ext} = M_{\Delta, ext}.\omega$ $E_c = \frac{1}{2}J\omega^2$
 - O L'effet des actions est moteur (resp résistant) sur la rotation si leur moment M_{Δ} et ω sont de même signe (resp de signe opposé).
 - Les actions extérieures qui sont conservatives sont celles qui vérifient : pour toute rotation élémentaire d'angle $d\theta$ on a

$$\delta W_{action} = M_{\Lambda, \, action} . d\theta = - dE_{p} \left(\theta \right)$$

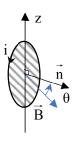
où $E_p(\theta)$ est un champ scalaire dépendant de la position angulaire θ de S.

Exemple : étude d'un circuit filiforme fermé dans \vec{B} uniforme en rotation autour d'un axe Oz.

On a vu que
$$\vec{M} = i \vec{Sn} \wedge \vec{B} = -i BS. \sin(\theta) \vec{u}$$

Donc
$$M_{Oz} = -iBS.sin(\theta)$$
 et

$$\delta W = M_{Oz}.d\theta = M_{Oz} = -iBS.\sin(\theta)d\theta = -d(-iBS.\cos(\theta))$$



Soit
$$E_p = -iBS.cos(\theta) = -\overrightarrow{m}.\overrightarrow{B}$$
 (où $\overrightarrow{m} = iS\overrightarrow{n}$ est le moment magnétique de la spire)
On a donc
$$\begin{cases} \overrightarrow{M} = \overrightarrow{m} \wedge \overrightarrow{B} \\ E_p = -\overrightarrow{m}.\overrightarrow{B} \end{cases}$$

On a donc
$$\begin{cases} \overrightarrow{M} = \overrightarrow{m} \wedge \overrightarrow{E} \\ E_p = -\overrightarrow{m}.\overrightarrow{E} \end{cases}$$

Le théorème de l'énergie cinétique peut se réécrire :
$$\frac{d}{dt}(E_c + E_p) = P_{\text{actions} \atop \text{non cons}}$$

- Le théorème du centre d'inerti est-il intéressant pour l'étude de S en rotation autour d'un axe fixe:
 - NON si on s'intéresse seulement à l'équation du mouvement en θ
 - OUI si on souhaite calculer la résultatne des actions de contact au niveau de l'axe de rotation

Condition de non-basculement d'un solide Application du TMC dans le référentiel barycentrique

• Dans de nombreux exercices, on étudie un solide S en translation ou en équilibre et on se demande si S ne risque pas de basculer, c'est-à-dire de se mettre en rotation autour d'un axe, alors qu'il ne l'était pas initialement.

Question : Comment écrire une condition mathématique d'absence de basculement ; cad d'absence de rotation autour de tout axe, quel qu'il soit ?

Réponse : On va exiger l'absence de rotation autour de G dans le référentiel barycentrique (noté souvent \mathcal{R}^*)

• **Définition**: \mathcal{R}^* est le référentiel en translation dans le référentiel d'étude à la vitesse $\overrightarrow{v(G/\mathcal{R})}$ (G est donc fixe dans \mathcal{R}^*)

• Propriétés :

- O Si S est en translation dans \mathcal{R} , il est immobile dans \mathcal{R}^*
- Si S est en rotation par rapport à une axe fixe Δ dans \mathcal{R} , il est en rotation par rapport à l'axe fixe parallèle à Δ passant par G dans \mathcal{R}^* ; on a alors $\overrightarrow{\Omega_{S/\mathcal{R}}} = \overrightarrow{\Omega_{S/\mathcal{R}^*}} = \overrightarrow{\theta} \overrightarrow{u_{\Delta}}$ Illustration:

• Conclusion : le non basculement peut s'obtenir par le TMC vectoriel en G dans \mathbb{R}^* :

$$\frac{d\overline{L_{G}^{*}}}{dt} = \overline{M_{G,ext}} + \overline{M_{G,ie}} \quad avec \quad \begin{cases} \overline{L_{G}^{*}} = \vec{0} & \text{si S est immobile dans } \mathcal{R}^{*} \\ \overline{M_{G,ie}} = \vec{0} \end{cases}$$

La condition de non basculement est donc $\overline{M_{G,ext}} = \vec{0}$

Remarque : en général \mathcal{R}^* n'est pas en translation rectiligne dans \mathcal{R} (et encore moins TRU). \mathcal{R}^* n'est pas galiléen. Mais on montre que $\overrightarrow{M_{G,ie}} = \overrightarrow{0}$ quel que soit le mouvement \mathcal{R}^* dans \mathcal{R}

