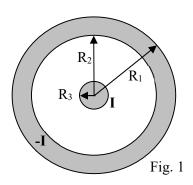
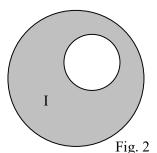
Magnétostatique (1)

Exercice 1 : champs créés par divers câbles

- 1- On considère un câble coaxial rectiligne et infini, dont une section est représentée sur la figure 1 ; les densités de courant sont uniformes dans chaque partie conductrice, toutes deux parcourues par une même intensité totale *I*, mais en sens inverse. Déterminer le champ magnétique créé dans tout l'espace par ce câble puis tracer le graphe donnant la norme du champ à toute distance *r* de l'axe de symétrie de révolution du câble. Commenter la valeur du champ au voisinage du câble.
- **2-** On considère un cylindre conducteur infiniment long, partiellement évidé selon une cavité cylindrique désaxée et dont une section est représentée sur la figure 2. Le conducteur est parcouru par un courant *I* uniformément réparti dans la section. Déterminer le champ magnétique créé par ce cylindre dans la cavité.

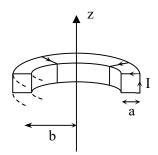




Exercice 2 : champ créé par un solénoïde torique

Un solénoïde a la forme d'un tore de rayon moyen b. Il est constitué de N spires carrées jointives de côté a.

- 1- Déterminer le champ magnétique créé $\overrightarrow{B}(M)$ par ce solénoïde lorsque ses spires sont parcourues par une intensité I.
- 2- Ce résultat serait-il modifié si les spires étaient circulaires ?
- 3- Déterminer l'inductance propre L du solénoïde.
- 4- Un fil infiniment long parcouru par un courant I' est placé sur l'axe z'z. I' est orienté dans le sens de l'axe. Déterminer l'inductance mutuelle entre les deux circuits.



- 5- On suppose que i' dépend du temps : i'(t) = I_o.cos(ω.t) et on mesure l'intensité i(t) du courant dans le tore que l'on ferme sur un ampèremètre. La résistance totale du circuit torique est R.
 5a- Déterminer la valeur de i(t) qui traverse le circuit torique en régime établi.
 - **5b-** A.N. : N = 1000; a = 2 cm; b = 5 cm; ω = 100 rad.s⁻¹ R = 1 Ω calculer i(t)
 - **5c-** Que se passe-t-il si Lω est très grand devant R?

Exercice 3 : Champ créé par un cylindre en rotation

On considère un cylindre plein, infini, d'axe (Oz) et de rayon R, chargé uniformément avec une densité volumique de charge $\rho > 0$. Ce cylindre est mis en rotation à la vitesse angulaire ω autour de son axe (Oz) ; la répartition des charges dans le référentiel du cylindre n'est pas modifiée par la rotation.

1- Montrer que le système est équivalent à une distribution de courants permanents, caractérisée par un vecteur densité de courant qui s'écrit, en coordonnées cylindriques d'axe (Oz): $\vec{i} = \vec{0}$

pour r>R et $\vec{j}=\lambda r\ \vec{u}_\theta$ pour $r\leq R$, où λ est une constante que l'on exprimera en fonction des données.

- 2- Quelle est la structure a priori du champ créé dans tout l'espace ?
- **3-** On constate que le champ magnétique est nul en tout point extérieur au cylindre. Proposer une justification sans aucun calcul mais en vous référant à des situations vues en cours.
- **4-** En déduire, par application du théorème d'Ampère, le champ magnétique en tout point intérieur au cylindre. Ce champ sera exprimé en fonction des données puis uniquement en fonction du rayon R et de la valeur maximale B_m de l'intensité du champ.
 - Note: pour calculer le courant enlacé, on pourra se servir du vecteur \vec{j} évoqué à la question 1. ou utiliser directement la définition du courant traversant une surface.
- 5- On isole maintenant par la pensée une tranche cylindrique de ce dispositif, comprise entre les rayons r et r + dr; en assimilant cette tranche à un solénoïde, déterminer le champ élémentaire créé sur l'axe (Oz) par cette tranche. Retrouver par superposition la valeur du champ total sur l'axe (Oz).
- **6-** Expliquer pourquoi il s'exerce des forces magnétiques sur le cylindre ; décrire qualitativement la structure géométrique de ces forces et prévoir leur effet sur le dispositif.

Exercice 4 : champ sur l'axe et au voisinage l'axe d'une spire de courant

On considère une spire métallique d'axe (Oz) et de rayon R, parcourue par un courant i (figure 1). On repère un point M quelconque de l'espace par ses coordonnées cylindriques (r, θ, z) .

 $\begin{array}{c|c}
 & M(r,z) \\
 & \downarrow \\$

La plupart des résultats qui seront montrés dans cet exercice se généralisent à toute distribution de courant à symétrie de révolution.

I- Champ magnétique sur l'axe :

- 1- Montrer qu'en tout point de l'axe (Oz) le champ magnétique est de la forme : $\vec{B}(M) = B_{axe}(z)\vec{e}_z$.
- **2-** On pose : $B_{axe}(z) = B_0 \times f(z/R)$ où B_0 est une valeur typique de l'intensité du champ magnétique sur l'axe. En vous justifiant, représenter l'allure du graphe de la fonction f.
- **3-** Proposer une expression de B_0 en fonction des paramètres du problème, par analyse dimensionnelle.

II- Comparaison avec une situation électrostatique :

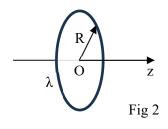
On considère maintenant une spire chargée d'axe (Oz) de rayon R portant une charge totale Q répartie uniformément (figure 2).

1- Montrer qu'en tout point de l'axe (Oz) le champ électrique est de la forme : $\vec{E}(M) = E_{axe}(z)\vec{e}_z$.

On pose : $E_{axe}(z) = E_0 \times g(z/R)$ où E_0 est une valeur typique de l'intensité du champ électrique sur l'axe. En vous justifiant, représenter l'allure du graphe de la fonction g.

représenter l'allure du graphe de la fonction g.

2- Proposer une expression de E₀ en fonction des paramètres du problème, par analyse dimensionnelle.



3- Parmi les expressions suivantes, identifier celles qui peuvent respectivement correspondre aux fonctions f et g, la variable étant notée u :

$$\left(1+u^2\right)^{-1/2} \quad \left(1+u^2\right)^{-3/2} \quad u \, \left(1+u^2\right)^{-3/2} \quad \left|u\, \left|\left(1+u^2\right)^{-3/2} \right. \right. \quad u \, \left(1+u^2\right)^{-5/2}$$

4- En adoptant l'une de ces expressions pour la fonction f, trouver la valeur de B₀ qui convient.

III- Champ magnétique au voisinage de l'axe :

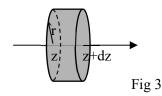
 $B_r(r,z)$.

L'objectif de cette partie est de montrer que l'on peut déduire le champ magnétique au voisinage immédiat de l'axe de la spire de courant à partir du champ sur l'axe, c'est-à-dire de la fonction $B_{axe}(z)$

1- Montrer par des arguments de symétrie très précis qu'en tout point M (r, θ, z) hors d'axe, le champ magnétique n'a pas de composante orthoradiale et que sa norme ne dépend que de r et z.

On note donc : $\vec{B}(M) = B_r(r,z)\vec{e}_r + B_z(r,z)\vec{e}_z$. Quel lien existe-t-il entre ces composantes et $B_{axe}(z)$?

- **2-** Donner l'allure des lignes de champ magnétique dans un plan méridien de l'axe puis comparer à la carte de champ électrostatique de la spire chargée de la question 2.
- **3-** On cherche à déterminer la composante B_r(r,z) au voisinage de l'axe, c'est-à-dire en supposant r faible à l'échelle des variations de B_r et B_z vis-à-vis de la variable r. Pour cela, on introduit un cylindre fermé élémentaire centré sur l'axe, de rayon *r* faible et dont les bases sont situées aux abscisses z et z + dz où dz est considéré infinitésimal (figure 3).



3). Calculer le flux magnétique à travers chaque face de ce cylindre, à l'ordre le plus bas non nul. En déduire un lien entre $B_r(r,z)$ et la fonction $B_{axe}(z)$. Calculer explicitement

4- On cherche enfin à déterminer la composante $B_z(r,z)$ au voisinage de l'axe. En introduisant un contour fermé élémentaire de votre choix, montrer que : $\forall (r,z) \quad \frac{\partial B_z}{\partial r}(r,z) = \frac{\partial B_r}{\partial z}(r,z)$ En déduire une expression approchée de $B_z(r,z)$ au voisinage de l'axe en fonction de $B_{axe}(z)$.

5- Peut-on de la même façon obtenir $E_r(r,z)$ et $E_z(r,z)$ en fonction de $E_{axe}(z)$ dans le cas de la spire chargée de la question 2 ? Si oui calculer explicitement $E_r(r,z)$ et commenter.

Magnétostatique (2)

Exercice 1: