II- Propriétés de symétrie

A- Existence d'invariance de la distribution de courant

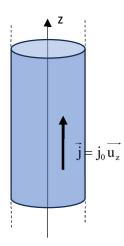
Par le principe de Curie, si la distribution D de courants admet une invariance par une translation ou une rotation (\vec{j} ou ses coordonnées sont indépendants de z ou de θ), \vec{B} admet également cette invariance.

B- Existence de plans de symétrie ou d'antisymétrie de D.

Si D admet un plan de symétrie π (\vec{j} symétrique par rapport à π) alors \vec{B} est **antisymétrique** par rapport à π . Si $M \in \pi$; $\vec{B}(M) \perp \pi$

Si D admet un plan d'antisymétrie π^* (\vec{j} antisymétrique par rapport à π^*) alors \vec{B} est **symétrique** par rapport à π^* . Si $M \in \pi^*$; $\vec{B}(M) \in \pi$

Exemple : Cylindre parcouru par un courant i uniformément réparti $\vec{j} = j_0 \overrightarrow{u_z}$



C- Notions de vrais vecteurs et de pseudo vecteurs

Il peut être surprenant que \vec{E} possède les symétries de ses sources et que \vec{B} possède les symétries opposées.

 \overrightarrow{E} et \overrightarrow{B} sont définis par leur effet : $\overrightarrow{F_e}=q\overrightarrow{E}$ et $\overrightarrow{F_m}=q\overrightarrow{v}\wedge\overrightarrow{B}$

IV- Conservation du flux de Bet de J

Définition : un vecteur \overrightarrow{G} est à flux conservatif ssi son flux à travers toute surface fermée est nul

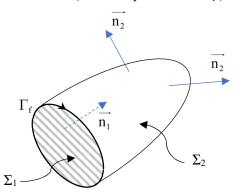
A- \vec{B} et \vec{j} sont à flux conservatif

Propositions:

- B est à flux conservatif. C'est une propriété fondamentale du magnétisme qui sert aujourd'hui de postulat.
 Cette propriété est lié à l'absence de monopole magnétique (c'est aussi cette propriété qui explique que toutes les lignes de champ magnétique bouclent sur elles-mêmes)
- 2- En régime stationnaire et dans l'ARQS \vec{j} est aussi à flux conservatif.

B- Conséquences d'un flux conservatif

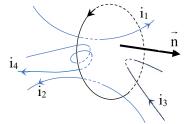
1- Soit \overrightarrow{G} est à flux conservatif Soit un contour fermé Γ_f et Σ sur une surface s'appuyant sur Γ_f , le flux de \overrightarrow{G} à travers Σ ne dépend pas du choix de Σ (mais uniquement de Γ_f)



Intérêt (pour \vec{j} en statique) : permet de définir la notion de courant enlacé par un contour : Soit Γ_f un contour fermé orienté

$$I_{\text{enlacé par }\Gamma_{f}} = \mathop{\iint}\limits_{\substack{P \in \Sigma \\ \Sigma s' \text{appuyant} \\ \text{sur }\Gamma_{f}}} \overline{j(P)}.dS_{P}.\overline{n(P)}$$

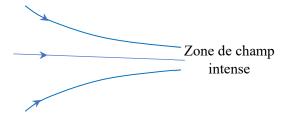
Ici
$$I_{\text{enlacé par }\Gamma_f} = i_1 - i_2 - 2i_4$$



2- \overrightarrow{G} est à flux conservatif ssi pour toutes sections Σ_1 , Σ_2 d'un même tube de champ, $\Phi(\overrightarrow{G}, \Sigma_1) = \Phi(\overrightarrow{G}, \Sigma_2)$

Intérêt (pour j en statique) : le courant est le même en tout point d'un fil électrique et est indépendant du choix de la section utilisée pour le calcul Prolongement : justification de la loi des nœuds.

3- Si \overrightarrow{G} est à flux conservatif alors $\|\overrightarrow{G}\|$ augmente lorsqu'on se déplace le long d'une ligne de champ dans le sens de resserrement des lignes de champ.



Remarque : cette propriété s'applique à \vec{B} et à \vec{j} en statique mais aussi à \vec{E} dans une région vide de charge $\left(\Phi_{\text{sortan t}}\left(\vec{E},\Sigma_f\right) = \frac{Q_{\text{int}}}{\epsilon_0} = 0\right)$