Analyse vectorielle - Bilan

	DIVERGENCE	ROTATIONNEL	
DEFINITION / THEOREME ASSOCIE	Pour une surface fermée infinitésimale $\delta\Sigma_M$ autour de M : $d\Phi_{\delta\Sigma_M \text{ fermée}} \ = \ div\vec{G}_{(M)}.\ d\tau_{\text{intérieur à }\delta\Sigma_M}$ Théorème d'OSTROGRADSKI : $\bigoplus_{\Sigma} \vec{G} \cdot d\vec{S} \ = \iint_{V \text{ intérieur à }\Sigma} div\vec{G}.d\tau$	Pour un contour fermé infinitésimal $\delta\Gamma_M$ autour de M : $dC_{\delta\Gamma_M \text{ fermé}} = \overrightarrow{rot} \overrightarrow{G}_{(M)}. d\overrightarrow{S}_{\text{s'appuyant sur }\delta\Gamma_M}$ Théorème de STOKES: $\oint_{\Gamma} \overrightarrow{G} \cdot d\overrightarrow{l} = \iint_{\Sigma \text{ s'appuyant sur }\Gamma} \overrightarrow{rot} \overrightarrow{G} \cdot d\overrightarrow{S}$	
Expression ANALYTIQUE EN COORDONNEES CARTESIENNES A connaître	$div\vec{G} = \frac{\partial G_x}{\partial x} + \frac{\partial G_y}{\partial y} + \frac{\partial G_z}{\partial z} = \vec{\nabla} \cdot \vec{G} \qquad \vec{\nabla} \equiv \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix}$	$\overrightarrow{rot}\overrightarrow{G} = \begin{bmatrix} \frac{\partial G_z}{\partial y} - \frac{\partial G_y}{\partial z} \\ \frac{\partial G_x}{\partial z} - \frac{\partial G_z}{\partial x} \\ \frac{\partial G_y}{\partial x} - \frac{\partial G_x}{\partial y} \end{bmatrix} = \overrightarrow{\nabla} \wedge \overrightarrow{G}$	
AUTRES COORDONNEES Donné si nécessaire	CYLINDRIQUE: $div\vec{G} = \frac{1}{r}\frac{\partial(rG_r)}{\partial r} + \frac{1}{r}\frac{\partial G_{\theta}}{\partial \theta} + \frac{\partial G_z}{\partial z}$ $SPHERIQUE: div\vec{G} = \frac{1}{r^2}\frac{\partial(r^2G_r)}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial(\sin\theta\ G_{\theta})}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial G_{\phi}}{\partial \varphi}$	$\overrightarrow{rot}\overrightarrow{G} = \begin{bmatrix} \frac{1}{r}\frac{\partial G_z}{\partial \theta} - \frac{\partial G_{\theta}}{\partial z} \\ \frac{\partial G_r}{\partial z} - \frac{\partial G_z}{\partial r} \\ \frac{1}{r}\left(\frac{\partial (rG_{\theta})}{\partial r} - \frac{\partial G_r}{\partial \theta}\right) \end{bmatrix} \qquad \overrightarrow{rot}\overrightarrow{G} = \begin{bmatrix} \frac{1}{r\sin\theta}\left(\frac{\partial (G_{\varphi}\sin\theta)}{\partial \theta} - \frac{\partial G_{\theta}}{\partial \varphi}\right) \\ \frac{1}{r\sin\theta}\left(\frac{\partial G_r}{\partial \theta} - \frac{1}{r\sin\theta}\right) \\ \frac{1}{r\sin\theta}\left(\frac{\partial G_r}{\partial \theta} - \frac{1}{r\sin\theta}\right) \\ \frac{1}{r\sin\theta}\left(\frac{\partial G_r}{\partial \theta} - \frac{1}{r\sin\theta}\right) \\ \frac{1}{r\sin\theta}\left(\frac{\partial G_r}{\partial \theta} - \frac{1}{r\cos\theta}\right) \\ \frac{1}{r\cos\theta}\left(\frac{\partial G_r}{\partial \theta} - \frac{1}{r\cos$	
CARACTERE CONSERVATIF	Flux conservatif $\Leftrightarrow div\vec{G} = 0$ $\Leftrightarrow \exists \vec{A} / \vec{G} = \overrightarrow{rot} \vec{A} \qquad \left(div(\overrightarrow{rot}) = 0\right)$	Circulation conservative $\Leftrightarrow \overrightarrow{rotG} = 0$ $\Leftrightarrow \exists f / \overrightarrow{G} = -\overrightarrow{grad} f \qquad (\overrightarrow{rot}(\overrightarrow{grad}) \equiv 0)$	

	LAPLACIEN	LAPLACIEN VECTEUR	
DEFINITION	$\Delta f = div \Big(\overline{grad} f \Big)$	$\overrightarrow{rot}\left(\overrightarrow{rotG}\right) = \overrightarrow{grad}\left(\overrightarrow{divG}\right) - \Delta \overrightarrow{G}$	
EXPRESSION ANALYTIQUE EN COORDONNEES CARTESIENNES A connaître	$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \vec{\nabla} \cdot \vec{\nabla} f \equiv \nabla^2 f$	$\Delta \vec{G} = \begin{bmatrix} \Delta G_x \\ \Delta G_y \\ \Delta G_z \end{bmatrix}$	
AUTRES COORDONNEES Donné si nécessaire	Cylindrique: $\Delta f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2}$ Spherique: $\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$ $= \frac{1}{r} \frac{\partial^2 (rf)}{\partial r^2} + \dots$	Monstrueux donc non tabulé. Attention, la formule des coordonnées cartésiennes ne se généralise pas : En sphérique par exemple, $\Delta \vec{G}$ N'EST PAS $\begin{bmatrix} \Delta G_r \\ \Delta G_{\theta} \\ \Delta G_{\phi} \end{bmatrix}$	

	ACTION DES OPERATEURS SUR DES PRODUITS DE CHAMPS Donné si nécessaire, peu utile		
2 champs scalaires	$\overrightarrow{grad}(f \times h) = f \times \overrightarrow{grad}(h) + h \times \overrightarrow{grad}(f)$		
1 champ scalaire 1 champ vectoriel	$div(f \times \vec{G}) = f \times div(\vec{G}) + \overrightarrow{grad}(f) \cdot \vec{G} \qquad \overrightarrow{rot}(f \times \vec{G}) = f \times \overrightarrow{rot}(\vec{G}) + \overrightarrow{grad}(f) \wedge \vec{G}$		
2 champs vectoriels	$div(\vec{G} \wedge \vec{H}) = \overrightarrow{rot}(\vec{G}) \cdot \vec{H} - \vec{G} \cdot \overrightarrow{rot}(\vec{H}) \qquad \qquad \overrightarrow{rot}(\vec{G} \wedge \vec{H}) = (div\vec{H})\vec{G} - (\vec{G} \cdot \overrightarrow{grad})\vec{H} - (div\vec{G})\vec{H} + (\vec{H} \cdot \overrightarrow{grad})\vec{G}$		
	$\overrightarrow{grad}\left(\vec{G}\cdot\vec{H}\right) = \vec{G}\wedge\overrightarrow{rot}\vec{H} + \left(\vec{G}\cdot\overrightarrow{grad}\right)\vec{H} + \vec{H}\wedge\overrightarrow{rot}\vec{G} + \left(\vec{H}\cdot\overrightarrow{grad}\right)\vec{G}$		
	où l'opérateur $(\vec{G} \cdot \overrightarrow{grad})\vec{H}$ ne se calcule aisément qu'en coordonnées cartésiennes par : $(\vec{G} \cdot \overrightarrow{grad}H_x)\vec{u}_x + (\vec{G} \cdot \overrightarrow{grad}H_y)\vec{u}_y + (\vec{G} \cdot \overrightarrow{grad}H_z)\vec{u}_z$		

Equations de Maxwell & équations locales - Bilan

EQUATIONS DE MAXWELL	Maxwell - Thomson ($Maxwell - «Flux »)$ $div(\vec{B}) = 0$	$\begin{aligned} &\textit{Maxwell - Ampère} \\ &\overrightarrow{rot}(\vec{B}) = \mu_0 \vec{j} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \\ &= \mu_0 (\vec{j} + \vec{j}_d) \end{aligned}$	Maxwell - Gauss $\operatorname{div}(\vec{E}) = \frac{\rho}{\varepsilon_0}$	$Maxwell - Faraday$ $\overrightarrow{rot}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$	
FORMULATION INTEGRALE DES EQUATIONS DE MAXWELL	Le flux magnétique est conservatif	Théorème d'Ampère généralisé $ \oint_{\Gamma} \vec{B} \cdot d\vec{l} = \mu_0 \left(\iint_{\Sigma \text{ s'appuyant sur } \Gamma} \left(\vec{j} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right) \cdot d\vec{S} \right) $ $= \mu_0 \left(I_{\text{traversant } \Sigma} + \iint_{\Sigma} \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \cdot d\vec{S} \right) $	Théorème de Gauss	Loi de Faraday $ \oint_{\Gamma} \vec{E} \cdot d\vec{l} = \iint_{\Sigma \text{ s'appuyant sur } \Gamma} -\frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} $ $ = -\frac{d\Phi_{\Sigma}(\vec{B})}{dt} $	
RELATIONS DE PASSAGE	La composante NORMALE de \vec{B} est CONTINUE	La composante TANGENTIELLE de $ec{B}$ est DISCONTINUE de $\mu_0 j_s$	La composante NORMALE de $ec{E}$ est DISCONTINUE de $ec{\sigma}_{ec{\mathcal{E}}_0}$	La composante TANGENTIELLE de $ec{E}$ est CONTINUE	
(fournies si nécessaire)	$\vec{B}_2 - \vec{B}_1$ =	$=\mu_0\vec{j}_s\wedge\vec{n}_{1\to 2}$	$\vec{E}_2 - \vec{E}_1 = \frac{\sigma}{\varepsilon_0} \vec{n}_{1 \to 2}$		
EQUATIONS DE PROPAGATION DES CHAMPS DANS LE VIDE	Equation de d'Alembert : $\Delta \vec{B} - \varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial^2 t} = 0 \qquad \& \qquad \Delta \vec{E} - \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial^2 t} = 0 \qquad \text{on pose} : \varepsilon_0 \mu_0 c^2 = 1$				
EQUATIONS DE CONSERVATION	Charge :	ENERGIE ; équation de POYNTING :	$u = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0}$: densité volumique d'énergie du champ électromag.		
	$\frac{\partial \rho}{\partial t} + div(\vec{j}) = 0$	$\frac{\partial u}{\partial t} + div(\vec{\Pi}) = -\vec{j} \cdot \vec{E}$	$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0}$: vecteur densities $\vec{\mu}$	té de courant d'énergie du champ vecteur de Poynting »	
			$\vec{j} \cdot \vec{E}$: puissance volum	mique cédée aux charges par le champ	