Problème chimie

I-a- La solution n'est pas saturée

- en Ag(OH) (s) si $Q_{ra} = [Ag^+].[OH^-] < K_{sa}$
- en Cu(OH)₂ (s) si $Q_{rb} = [Cu^{2+}] \cdot [OH^{-}]^{2} < K_{sb}$

Tout l'argent ou le cuivre est à l'état « libre » en solution sous forme d'ions Ag^+ ou Cu^{2+} donc $\left[Ag^+\right]_i = 10^{-2} \, \text{mol.L}^{-1}$ et et $\left[Cu^{2+}\right]_i = 10^{-2} \, \text{mol.L}^{-1}$.

On ajoute de la soude concentrée, soit des ions OH⁻ ; la concentration en ions OH⁻ à l'équilibre augmente au fur et à mesure de l'addition de soude.

D'après ce qui précède, la solution n'est pas saturée

• en Ag(OH) (s) si
$$[Ag^+]_i$$
. $[OH^-] < K_{sa} \quad [OH^-] < \frac{K_{sa}}{[Ag^+]_i} \quad [OH^-] < 2.10^{-6} \text{ mol.L}^{-1}$

soit si
$$pOH > 5,7$$

• en Cu(OH)₂ (s) si
$$[Cu^{2+}]_{i}.[OH^{-}]^{2} \le K_{sb} [OH^{-}] \le \sqrt{\frac{K_{sb}}{[Cu^{2+}]_{i}}}$$
 $[OH^{-}] \le 4,5.10^{-9} \text{ mol.L}^{-1}$ soit si $POH > 8,35$

Le premier précipité qui apparaît est celui d'hydroxyde de cuivre de couleur bleue pour $\lceil OH^- \rceil = 4,5.10^{-9} \ mol.L^{-1}$

I-b- Lorsque le précipité d'hydroxyde d'argent apparaît, $\lceil OH^- \rceil = 2.10^{-6} \text{ mol.L}^{-1}$ et

$$\left[\text{Cu}^{2+} \right] = \frac{\text{K}_{\text{sb}}}{\left[\text{OH}^{-} \right]^{2}} = 5.10^{-8} \,\text{mol.L}^{-1}$$

Pratiquement tous les ions Cu(II) sont sous forme de précipité.

I-c-

- II- La solution S contient initialement en solution les ions : Cu^{2+} : $n_2 = C_2 \cdot V_o$; Ag^{2+} : $n_3 = C_3 \cdot V_o$ H_3O^+ : $n_1 = C_1 \cdot V_o$ et NO_3^- : $n = (C_1 + 2C_2 + C_3) \cdot V_o$; on ajoute de la soude, soit des ions OH^- et Na^+ .
- II-a- Equations bilan des réactions se produisant :

$$\begin{array}{|c|c|c|c|}\hline R & H_3O^+ + OH^- = 2\,H_2O & K^o = 1/\,K_e = 10^{14}\\ R_{pa} & Ag^+ + OH^- = Ag(OH)(s) & K_{pa} = 1/\,K_{sa} = 10^{7,7}\\ R_{pb} & Cu^{2+} + 2\,OH^- = Cu(OH)_2(s) & K_{pb} = 1/\,K_{sb} = 10^{18,7}\\ \hline \end{array}$$

Ces trois réactions sont quasitotales. La première, R, se produit dès le début de l'ajout d'ions OH⁻. Les deux autres d'après I ne se produisent que lorsque Q_{ra} devient égal à K_{sa} et Q_{rb} égal à K_{sb} .

- II-b- Le premier précipité qui apparaît, d'après le test qui confirme les résultats de I, est celui d'hydroxyde de cuivre : A_1 correspond à l'apparition de ce précipité et au début de R_{pb} . A_2 correspond à l'apparition du précipité d'hydroxyde d'argent soit au début de R_{pa} .
- II c- Partie OA_1 de la courbe : on se trouve en présence de R seule. En A_1 , $pH \approx 5,5$. On peut donc considérer que ce point correspond à l'équivalence du titrage de l'acide ($pH_0 < 2$: $[H_3O^+]_0 > 10^{-2}$ mol. L^{-1} , pour pH = 5,5, $[H_3O^+] = 10^{-5,5}$ mol. L^{-1} : pratiquement tous les ions H_3O^+ ont été consommés).
 - Partie A_1A_2 de la courbe : R_{pb} précipitation de $Cu(OH)_2$; en A_2 , pour v_{e2} , on peut considérer que pratiquement tous les ions Cu^{2+} ont réagi. (voir I)
 - Partie A₂E₃ de la courbe : R_{pa} précipitation de Ag(OH).
 - Ensuite ($v > v_{e3}$) excés de soude.

II-d- $v = v_{e1}$: équivalence du titrage de l'acide;

D'après l'équation bilan $C_b.v_{e1} = C_1.V_o$

 $C_1 = 1,5.10^{-2} \,\text{mol.L}^{-1}$

 $v = v_{e2}$: équivalence de R_{pb} qui a débuté pour $v = v_{e1}$. Le nombre de moles d'ions OH^- ayant réagi avec les ions Cu^{2+} est égal à $C_b.(v_{e2} - v_{e1})$.

D'après la stoechiométrie de R_{pb} : $C_b \cdot (v_{e2} - v_{e1}) = 2.C_2 \cdot V_o$

 $C_2 = 2,5.10^{-2} \,\text{mol.L}^{-1}$

 $v = v_{e3}$: équivalence de R_{pa} qui a débuté pour $v = v_{e2}$. Le nombre de moles d'ions OH^- ayant réagi avec les ions Ag^+ est égal à C_b . $(v_{e3} - v_{e2})$.

D'après la stoechiométrie de R_{pa} : $C_b \cdot (v_{e3} - v_{e2}) = C_2 \cdot V_o$

 $C_3 = 4.10^{-2} \,\text{mol.L}^{-1}$

II-e- En A₁: apparition du précipité $Cu(OH)_2$; pH = 5.5

$$\begin{split} \left[OH^{-}\right] &= \frac{K_{e}}{\left[H_{3}O^{+}\right]} = 10^{-8.5} \ mol.L^{-1} \quad et \quad \left[Cu^{2+}\right] = \frac{C_{2}.V_{o}}{V_{o} + v_{e1}} = 2,17.10^{-2} mol.L^{-1} \\ soit \quad \left[K_{sb} = Q_{rb} = 2,2.10^{-19}\right] \qquad \boxed{pK_{sb} = 18,7} \end{split}$$

En A_2 : apparition du précipité Ag(OH); pH = 8

$$\begin{split} \left[OH^{-}\right] = & \frac{K_{e}}{\left[H_{3}O^{+}\right]} = 10^{-6} \quad mol.L^{-1} \quad et \quad \left[Ag^{+}\right] = \frac{C_{3}.V_{o}}{V_{o} + v_{e2}} = 1,95.10^{-2} \, mol.L^{-1} \\ soit \quad \left[K_{sa} = Q_{ra} = 1,95.10^{-8}\right] \qquad \left[pK_{sa} = 7,7\right] \end{split}$$

III- Composition initiale de la solution : Cu^{2+} : $n_{i,1} = 0,4$ mmol NO_3^- : $n_{i,2} = 0,8$ mmol. On ajoute du solide Ag(OH) et on constate l'apparition d'un précipité bleu (d'hydroxyde de cuivre).

III-a- Equation bilan: $2 \text{Ag(OH)}(s) + \text{Cu}^{2+} = \text{Cu(OH)}_2(s) + 2 \text{Ag}^+$

$$K^{\circ} = \frac{\left[Ag^{+}\right]^{2}}{\left[Cu^{2^{+}}\right]} = \frac{\left[Ag^{+}\right]^{2}.\left[OH^{-}\right]^{2}}{\left[Cu^{2^{+}}\right].\left[OH^{-}\right]^{2}} = \frac{K_{sa}^{-2}}{K_{sb}} = 10^{3,3} \qquad \text{avancement de } R \;\; \xi \approx \xi_{max}$$

III-b- A l'équilibre, on aura (en mmol) :
$$n(Cu^{2^+})=0,4$$
 - ξ $n(Ag(OH))=0,5$ - $2.\xi$ $n(Cu(OH)_2)=\xi$

Présence de solide Cu(OH)₂ : K_{sb} vérifié :

$$[OH^{-}] = \sqrt{K_{sb} / [Cu^{2+}]} = 3,65.10^{-9} \text{ mol.L}^{-1}$$
 $pH = 14 - pOH = 5,6$

Vérification de la dissolution totale du précipité de Ag(OH) :

$$Q_{ra} = [Ag^{+}].[OH^{-}] = 1,8.10^{-10} < K_{sa}$$