Modele scalaire de la lumiere

I- Module scalaire de la lumiére et signal lumineux
Situation étudiée

Milieu de propagation DLHI
(Diélectrique Linéaire
Homogene et Isotrope) Etude dans la zone

de rayonnement
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Source :
e Taille a>2A
(source ponctuelle)
e Quasi monochromatique
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Modele scalaire : on admet que dans I’approximation d’onde localement plane (lo < SM) on peut remplacer le
champ E par un champ scalaire s(M, t) appelé signal lumineux pour traiter la plupart des problémes

d’optique (ce signal est en réalité une composante de E dans le plan de polarisation

Dans un milieu DLHI contenant la source S ce signal s’écrit
s(S,t)=A, cos(ot+q,)

s(M,t) = A(M)cos(m(t —Tou )+ (po)
e 1, retard lié a la propagation de S a M
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Généralement A(M) est considérée indépendante de M dans la zone étudiée (toujours limitée)

s(M,t) =A(M)cos(mt—n%r+(poj = A(M)cos(mt —n%rnt(poj

0

Que devient s(M,t) quand I’onde traverse des dioptres ?



II- Lien entre signal lumineux et optique géométrique. Théoreme de Malus

On constate (et on peut démontrer) que le rayon lumineux de 1’optique géométrique sont les lignes de champs du

vecteur de Poynting ou les lignes de champ du vecteur d’onde local k.

Ceci est formalisé par le théoréme de Malus :

Dans un milieu diélectrique linéaire et isotrope, aprés un nombre quelconque mais identique de
réflexion et de réfractions, les rayons lumineux issus d’une source ponctuelle restent toujours

perpendiculaires aux surfaces d’ondes’.

Exemple : réfraction sur un dioptre plan
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Autre exemple : lentille
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Surfaces d’onde ¥ Surfaces d’onde
sphériques planes

Attention aux diviseurs d’onde
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11 suffit de montrer que t,. =ty (il est évident que

tyn =tgpet tee =tpp)
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typ = BD _ &ADsin(il)
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or n, sin(i1 ) =n, sin(iz) donc t,c =ty
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lentille

Onde n°1

Onde n°2

! Surface d’onde : ensemble des points atteints au méme instant par le signal depuis la source ; ¢’est également une surface

équiphase.



I1I- Calcul de la phase d’'une onde lumineuse monochromatique. Chemin

optique

A- Chemin optique parcouru par I'onde depuis la source

(SM)= [ n(P)d, A%M:%(SM)
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B- Simplification lors du passage par un systeme dioptrique
1- Lame a faces paralléles traversées sous une incidence faible
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simplification
(SM)=SI, +n I,J, +J,M n=-S"~e
== COS1
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(SM)=SI+nlJ+IM=SI+I+IM+(n—1)IJ =(SM)aus +(n—1)e  |(SM )avec

lame lame

=(SM)uns + (n—1)e

lame
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chemin optique
ajouté par la lame

2- Lentille
S au foyer objet d’une lentille
A M . s A
Ly Toujours utiliser le théoréme de Mallus :
— : > (SM)=(SH)=SH+(n-1)e
S=F H ou e est I’épaisseur de la lentille
v

Propriété : pour deux points S et S’ conjugués a travers un

IP"

v

systéme stigmatique, le chemin optique est le méme le long
de tout rayon allant de Sa S’ : (SS')=SS'+(n—-1)e

S



C- Simplification lors de la réflexion sur un miroir plan

M Virtuellement, tout se passe comme si la lumiére venait de S’

(SM)=(SI)+(IM) =n,, ST +IM
parssrlnétrie

(SM)=n,,.S'M

D- Déphasage supplémentaire
Dans trois situations particuliéres, il faut retrancher (ou rajouter) 7 a la phase du signal (ou 5 au chemin optique)

par rapport au calcul précédent :

s(M,t) = a(M)cos(mt —%(SM)camﬂé comme + Qg — TE]
0

précédemment

= a(M)COS((Dt _i_n((sM)calculé comme + %J + (P()}

0 précédemment

1¢" cas : Réflexion sur un miroir entre S et M (li¢ au fait que la réflexion impose un nceud de E donc a et B,

réf

sont en opposition de phase au point d’incidence.
. AN
2¢me cas : réflexion vitreuse (sur un dioptre) sur un milieu plus réfringent que le milieu
d’incidence. +0
3¢me cas : Passage par un point de convergence
. verre ,
A air air




E- Cas particulier : expression de la phase d’'une onde plane ou d’'une source S
rejetée a I'infini
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A priori : s(M,t) = a(M)cos(mt —kSM + (po) avec k = oo
0

Cette expression n’est pas pratique lorsque S est située tres loin et inutile lorsque S est a I’infini.

On change alors de tactique et on choisit une nouvelle origine quelconque arbitrairement O

s(M,t) =a(M)cos| ot —k.OM-k.SO + o,
0

o
phase a l'origine
enM=0Oetat=0

On obtient alors : [s(M,t) = a(M)cos(mt ~k.OM + 90)




