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DEVOIR SURVEILLE n°4
Samedi 13 décembre 2025 — Durée 4h

L épreuve contient 3 parties totalement indépendantes.

DS4

La calculatrice est autorisée pour certaines parties et pas d’autres ; veuillez respecter cette consigne !

Partie 1 : Un traineau sur la glace. (Extrait de Mines MP 2019) | Calculatrice interdite |

Un traineau a chiens est un dispositif de masse totale M (le pilote, ou musher, est compris
dans cette masse) qui peut glisser sur la surface de la glace avec des coefficients de glissement
statique (avant le démarrage) ps et dynamique (en mouvement) fig.

(d 12 — Les chiens sont reliés au traineau par des éléments de corde tendus, de masse
négligeable et inextensibles. Montrer qu'un tel élément de corde transmet les tensions et que
celles-ci sont colinéaires a la corde.

(A 13 — Le trajet se fait soit a I’horizontale, soit sur une faible pente ascendante caractérisée
par I'angle o avec I'horizontale. Montrer que, dans ce dernier cas, tout se passe comme dans
un mouvement horizontal sous réserve de remplacer pq par p;, que I'on exprimera.

L’intensité de la force de traction totale F' exercée par l'ensemble des chiens dépend de leur
vitesse v et on adoptera le modele F' = Fy — fv ou Fy et 3 sont des constantes positives. On
prendra les valeurs M = 5,0 x 102kg, a =0, g = 5,0 x 1072 et p, = 8,0 x 1072,

(d 14 — Déterminer la valeur minimale de F{y permet-
tant le démarrage du traineau. i
(d 15 — La vitesse du traineau en régime stationnaire ;

est vo = 3m-s~!, atteinte & 5% pres au bout d’un temps :
t; = 5s. Exprimer d'une part 8 en fonction de M et t; et
d’autre part Fy en fonction de 3, vo, pq, M et g. Calculer
leurs valeurs respectives.

O

Toujours a vitesse constante vg. le traineau aborde une
courbe a plat qu’on assimilera a un cercle de centre O
et de rayon R (cf. fig. 4). Les chiens (modélisés ici en
un seul point C') doivent donc tirer vers l'intérieur du
cercle.

F1GURE 4 — Trajectoire circulaire du
tralneau

[d 16 — Déterminer en fonction des données la tension
T de la corde et 'angle 8 entre la force de traction et la
trajectoire.

Donnée :

Intensité du champ de pesanteur go=9,8m x s72
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PARTIE 2 : Champ variable au sein d’un solénoide (Centrale MP 2003)

Calculatrice autorisée

Formulaire : célérité de la lumiére dans le vide : ¢ = 3,0 x 108m .57 , perméabi-
lité du vide : y, = 4nx 10" H-m’
En coordonnées cylindriques r, 6,z , de base locale (3, 2¢,8,) :
_ > 1fO(r4,) dAg U(rA,)
div A = [ or +88+ oz }
24, A7, 1004y 04,
[T et

el = dz  or e ar 00

rloe 2z

el 1[3Az a(rAB)]

Relations de passage des champs a I’interface X entre deux milicux notés (1) et (2) :

= = o(M,1) = . _
VM eX,Vt Ey(M.0)-E(M.0)= (o )"1»2 s By (M.1) =By (M.1) = g Jy (M) ATy
€

On rappelle les résultats principaux associ€s aux aspects énergétiques de
I’¢électromagnétisme :

iy . ) . i 1 1
Densité volumique d’énergie €électromagnétique : u,, = ESOE2 + 2—B2
Mo
"y . o .. = EAB
Vecteur densité de puissance surfacique d’énergie électromagnétique : I =
Mo

Puissance volumique cédée par le champ aux charges : p = ]E

Equation de Poynting : ag:m + le( ) =-jE

On désire modifier la surface d'un barreau cylindrique, conducteur de ’électri-
cité, en chauffant cette surface. Cet échauffement provoque une diffusion des
atomes et une restructuration cristalline. Pour cela, le barreau est plongé dans
le champ magnétique créé par un solénoide parcouru par un courant électrique
de fréquence 100 kHz

IL.A - On étudie tout d’abord le champ créé par un solénoide de rayon a, infini
selon un axe Oz, a spires jointives et parcourues par un courant d’intensité I
(figure 2). Le solénoide est assimilable & une nappe de courant surfacique
d’intensité uniforme j,. Dans un premier temps, 'espace intérieur et 'espace

extérieur du solénoide sont vides.

L'intensité du courant est constante: I Figure 2
I=1,.

IILA.1) Ecrire les quatre équations de
Maxwell, sous forme locale.
On notera p la densité volumique de
2 i 3
charge et j la densité volumique de cou-

rant.

II.LA.2) Exprimer le vecteur _}?s en fonction de I,, n (nombre de spires par
unité de longueur) dans la base des coordonnées cylindriques (¢, &g, ;) .

On montrera que j, =nl,é,.

DS4



MP*

II.LA.3) Déterminer précisément les éléments de symétrie de la distribution de
courant. En déduire les composantes et les variables intervenant dans I'expres-

sion de B. Justifier que B est uniforme dans les deux régions de 'espace déli-
mitées par le solénoide.

: i 3 R
I_E.A.ZL) Dm;mer la relation entre le champ extérieur Bext, le champ intérieur
Bint, u, et js. Sachant que Bext est nul, exprimer Bint en fonction de p,, per-
méabilité du vide, n et I.

ILB - L'intensité du courant est a présent variable et sinusoidale. On utilise la

notation complexe pour le courant et pour les champs :
1= Ioej%t, E(r, t) = }_j)(r)ej%t, et Zﬂ{r,t) = E(r)ejmﬁt

1I.B.1) Montrer qu’il doit obligatoirement exister un champ électrique £ non
nul dans une partie de l'espace.

II.B.2) On cherche des solutions de la forme E(r)ée et B(r)é, .

Déterminer les deux équations différentielles du premier ordre en r vérifiées
par E(r) et B(r), pour ra .

I1.C - Le solénoide est a présent complétement rempli par un cylindre conduc-
teur, de conductivité électrique v, et le courant qui 'alimente est sin_lglso'l'dal, de
pulsation w, : I() = I cos(wyt) . Localement, on pourra écrire j = yE ou j est
I'amplitude complexe de la densité volumique de courant.

I1I.C.1) Déterminer les deux équations différentielles du premier ordre en r
vérifiées par E(r) et B(r),pour r<a.

I1.C.2) Montrer que I'on peut négligerici la densité de courant de déplacement
devant la densité de courant de conduction dans le cas d’un cylindre de cuivre
(You = 6,0x 10’ s. m'l) ou de silicium (yg; = 1,0x 10° S m'l} , pour une fréquence
de 100 kHz . Simplifier alors les équations précédentes.

11.C.3) Ecrire I’équation différentielle (Eq) vérifiée par E(r) seul puis I'équa-
tion vérifiée par B(r) seul.

11.C.4)

a) L'équation (Eq) fait apparaitre une constante homogéne & une longueur, que
I'on notera . Donner I'expression de A et calculer sa valeur pour le cuivre A,
et pour le silicium Ag; pour une fréquence de 100 kHz .

Pour la suite on adopte la valeur ¢ = 15 cm.

b) La résolution de I'équation différen- A Figure 3

tielle (Eq) fournit la fonction complexe * |-ceeeemmmmnnnaan
E(r). On a représenté les courbes
(figure 3) f(r) = |E(r)| avec f(a) = 1, pour
un barreau de silicium et pour un bar-
reau de cuivre.

fs,‘(")

z o o o z _)
]Q)ecrlre les propriétés des champs E et
B dans les barreaux, dans chacun des =
cas. Interpréter le rdle de la constante 1.
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I1.C.5) Dans le barreau de cuivre, on décrit la répartition des courants volu-
miques par le modele suivant :

>
0

2

r<a-»>A J = . )
: _, ol jy(t) est une fonction réelle.
J = jo(t)ee

a-A<r<a

a) Ecrire les deux équations de Maxwell relatives au champ magnétique, dans
Papproximation de la question I1.C.2.

b) Montrer que I'’ensemble {barreau de cuivre + solénoide} est assimilable a un
seul solénoide de rayon =a , parcouru par une intensité I que I'on exprimera en
fonction de Iy, n, &, j, et o,.

c¢) De lavaleur de B pour r<a -4, déduire I'expression de j, en fonction de I,
n, o, et k.
II.C.6) On utilise le modele de la question précédente.

a) Calculer la puissance instantanée dP dissipée par effet Joule dans un
volume élémentaire dt de barreau puis la puissance moyenne temporelle <dP> .

b) Exprimer la puissance moyenne <P> dissipée sur une hauteur & du barreau
de cuivre, en fonctionde Iy, n, i, v, pg, ©p et A.

¢) Déterminer I'expression du champ magnétique pour a -A<r<a.
d) En déduire le champ électrique Eenr=a.

e) Calculer la valeur instantgnée du vecteur de Poynting Benr=a puis sa
valeur moyenne temporelle <R> en fonction de I, n, v, py et o,.

f) Calculer le flux moyen entrant <®> du vecteur de Poynting sur une hauteur
h de cylindre. Commenter le bilan énergétique.
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PARTIE 3 : Principe du moteur asynchrone. (Centrale TSI 2004) |Calculatrice autorisée,

Une petite bobine plate, de centre O, formée de N spires de section A, fermée sur elle-méme, d’inductance propre
Let de résistance r tourne a la vitesse angulaire constante o autour de I’axe Oz ; sa position est repérée par I’angle

entre e, et le vecteur unitaire n normal au plan de la bobine : (ex , n) = ot — o, (o, désignant une constante

positive)
| P B

) ) » bobine plate
Cette bobine est plongée dans un champ .
magnétique B, de norme B constante, ’ %
« tournant » lui aussi autour de I’axe Oz a la . 1 -~

. . — = 0
vitesse angulaire ®,constante : (ex,B) =m,t ‘\
(figure 2) bty |
x -
1- Déterminer la valeur, a I’instant t, de wt — o 0
, - = . . -
I’angle (n,B) = o en fonction de o, Figure 2: 7 et B sont constamment dans le plan Oxy

o, O et t. En déduire le flux @ du
champ B a travers la bobine. Quelle est la force électromotrice induite e correspondante ?

2- En régime établi, cette force électromotrice engendre dans le circuit (r, L) un courant sinusoidale i(t) de
méme pulsation que e que 1I’on exprimer sous la forme i= Isin(a - (p) . Déterminer I et tan@(on
précisera 1’intervalle de largeur © chercher @)

3- A quel couple T =Te, le circuit est-il soumis ? Quelle est la valeur moyenne T, de ' ? A quelle
condition ce couple est-il moteur ?

4- On se propose d’étudier la variation du couple moyen T",, en fonction de la vitesse angulaire
4a- Vérifier qu’il est possible d’écrire T, sous la forme
r r

2
- % avec @, =(NBA)2 et y= +—(, —0)

T —
2y Wy—® T

m

Pour toutes les interprétations, on raisonne comme si le couple moteur appliqué au circuit (également
désigné par « cadre ») était a tout instant le couple moteur moyen.
4b- Pour quelle valeur de o la quantité y est-elle minimale ?

4c- Soit oy la valeur de la pulsation qui donne le maximum de I',,, notée T'y,,, . Exprimer T',,, et vérifier

m?

que couple moyen maximal est indépendant de la résistance r.
4d- Donner I’allure de la courbe T, ((o) pour tout le domaine de variation de ® (y compris les valeurs

négatives). On désignera les extrema par les points M et M.
4e- Interpréter les branches © < 0, puis 0 < ® < ®, et ® > ®, . Justifier le terme de « moteur asynchrone »

de ce dispositif.

5- On suppose que le moteur ait & vaincre un couple résistant de norme constante I',, produit par les
machines qu’il doit entrainer et par les frottements.
5a- Le cadre primitivement au repos (= 0), est soumis au couple moyen I'y =T, (0)
i- Exprimer T, .
ii- Que se passe-t-il si I'y >T", ?
iii- A partir de la comparaison des graphes I'=1", (oa) et I' =T, (on appelle P le point d’intersection

entre les deux graphes), préciser qualitativement I’évolution du mouvement du cadre. Caractériser le
régime atteint par le moteur.
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5b- On charge davantage le moteur en maintenant la condition I', > T, . Comment évolue le point figuratif
P?
5¢- Quel est sur le graphique la zone de fonctionnement stable ? Justifier la réponse



