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Problème 1 : Pression de radiation. 
 
On considère une onde plane progressive monochromatique de fréquence ν se propageant dans le vide à 
la célérité c selon la direction Ox. L’onde est polarisée rectilignement, le champ électrique, d’amplitude 

E0 étant dirigé selon Oy :   i 0 yE E exp i t kx u  
 

représente l’expression du champ électrique. 

1- Rappeler la relation qui relie le champ magnétique iB


au champ électrique iE


. En déduire 

l’expression de iB


 

 
2- Cette onde rencontre, sous incidente normale, en x = 0, un miroir plan de surface S, 

parfaitement réfléchissant (on verra plus tard que cela signifie que les champs électriques et 
magnétiques sont nuls à l’intérieur du miroir). 

2a- Quelles sont les conditions aux limites que doivent satisfaire le champ électrique et le champ 
magnétique à la surface du miroir ? En déduire l’existence nécessaire d’une onde réfléchie et 

justifier soigneusement que ce champ réfléchi vaut   r 0 yE E exp i t kx u   
 

.  

2b- En déduire l’expression du champ magnétique réfléchi : rB


 

2c- Déterminer les champs résultants réels E


et B


. 
2d- Déterminer la densité moyenne d’énergie u de l’onde résultante en fonction de E0. En déduire 

le nombre moyen n de photons par unité de volume. Comment ce nombre est-il relié au 
nombre n0 de photon que transporte l’onde incidente par unité de volume ? 

 
3- Combien y a-t-il de photons qui frappent S pendant dt ? En déduire la quantité de mouvement 

transférée au miroir pendant dt (on rappelle qu’un photon de fréquence ν se déplaçant selon 

Ox a pour quantité de mouvement x

h
p u

c




 
). 

Déterminer alors la pression (pression de radiation) exercée par l’onde sur le miroir ; on 
exprimera cette pression en fonction de la densité volumique u d’énergie électromagnétique de 
l’onde résultante puis en fonction de ε0 et E0.  

 
4- On veut retrouver ce résultat par un raisonnement purement électromagnétique. Pour cela le 

miroir est assimilé à un métal de conductivité électrique γ. On rappelle que le métal de 
conductivité γ est considéré comme un milieu de constantes ε0 et μ0, sans charge ( ρ = 0) mais 

avec une densité volumique de courant vérifiant : j E 
 

 

4a- Ecrire les équations de Maxwell dans le métal. Montrer que le champ électrique E


vérifie une 

équation de propagation de la forme 
2

2

E E
E A B

t t

 
  

 

 
 où A et B sont deux constantes que 

l’on exprimera en fonction de ε0, μ0 et γ. 
Dans toute la suite de cette partie on supposera que 0    et on fera les approximations qui en 

découlent. On cherche une solution à ces équations correspondant à une propagation vers les x 

positifs, où le champ E


s’écrit :  i t Kx
2 yE E e u 

 
. 

4b- Montrer que ceci n’est possible que si K est un complexe que l’on écrira  K 1 i    et dont 

on explicitera α. Déterminer alors l’expression du champ magnétique B


en fonction de K, 

2E et ω. 



4c- Lorsque l’onde plane incidente rencontre le miroir métallique elle donne naissance à une onde 
réfléchie dont le champ électrique est d’amplitude 1E et à une onde transmise du type 

précédent. On admettra que les composantes tangentielles des champs, tant électrique que 
magnétique, sont continues à la traversée d’une telle interface. Déterminer alors 2E en 

fonction de E0 dans l’approximation suggérée. Expliciter les champs réels transmis tE et 

tB en fonction de E0, ω, α et c. 

En déduire la densité volumique de courant j


existant dans le métal. 

4d- On considère, à l’intérieur du métal, un petit parallélépipède 
de longueur dx et de base de surface dS parallèle à l’interface. 
Déterminer la force moyenne qui s’exerce dessus. En déduire la 
force totale s’exerçant sur tout le métal s’appuyant sur dS. 
Montrer que l’on retrouve alors la pression de radiation 
calculée au 3- même si γ devient infini (cas du miroir 
parfaitement réfléchissant)  

 
 



Problème 2 : optique géométrique 
 
Partie 1 
 
On considère un système centré (S), d'axe Ox, constitué de deux lentilles minces (L1) et (L2), de 
distances focales images respectives f '1 et f '2, dont les centres optiques O1 et O2 sont distants 
de 1 2e O O . La lentille (L1) reçoit la première la lumière incidente. 
On désigne respectivement par F1 et F '1 les foyers objet et image de (L1) et par F2 et F '2 ceux 
de (L2) et on pose  = 1 2F ' F  (  est appelé intervalle optique de (S) ). 

La position d'un point A sur l'axe optique est repérée par 1x FA , celle de son image par (S), 

A' sur l'axe, est repérée par 2x ' F ' A ' . 

1-a- Montrer que la relation donnant x' en fonction de x est :    
2 2

2 1f ' f '

x ' x
   

1-b- Interpréter le cas x = 0. 
1-c- On considère un objet AB perpendiculaire à l'axe optique, A appartenant à l'axe 

optique. Son image par (S) est A'B', exprimer le grandissement transversal T = 
A 'B '

AB
 

de (S) en fonction de x, x' ,f '1 et f '2 . 
 
2-a- On définit les points principaux H et H ' de (S) qui sont les points conjugués pour 

lesquels le grandissement T = 1 . 
Calculer xH = 1F H  et x'H' = 2F ' H '  pour le couple (H,H') en fonction de f '1, f '2 et . 

2-b- Application : les lentilles L1 et L2 ont pour distances focales respectives f '1 = -f '2 = 
4 cm ( est a priori quelconque) 
2-b-i- Déterminer graphiquement (sans utiliser le calcul précédent) la position des 
points principaux H et H' pour lesquels le grandissement de (S) est égal à 1 (on pourra 
par exemple commencer par tracer la marche d’un rayon incident sur L1 parallèlement 
à l’axe optique). 
2-b-ii- Vérifier, dans ce cas particulier, la cohérence avec l'expression déterminée en 
2-a-. 

 
3- On désigne par F et F' les foyers objet et image du système (S). 

3-a- Calculer xF = 1F F  et x'F' = 2F ' F '  en fonction de f '1, f '2 et . 

3-b- Les distances focales objet et image de (S) sont définies par : f HF et f ' H 'F '  .  

Donner, en fonction de f '1, f '2 et , les expressions de f et f '. Que constate-t-on ? 

3-c- Exprimer la vergence de (S) définie par C = 
1

f '
 en fonction des vergences C1 de (L1) 

, C2 de (L2) et de e. Interpréter le cas où e = 0. 
 
 



Partie 2 - Lunette astronomique - Longue vue 
 
I- Une lunette astronomique est constituée d'un objectif ( L1) et d'un oculaire (L2) qui sont deux 
lentilles minces convergentes, de même axe optique, de distances focales images respectives f 
'1 = 120 cm et  f '2 = 3 cm. 
On veut, avec cette lunette, observer la Lune, objet étendu à l'infini, qui est vue directement de 
la Terre sous le diamètre angulaire α = 31 '.  
 

1- La lunette est afocale, c'est-à-dire réglée en vision à l'infini ( œil "normal" ) 
1-a- Quelle valeur prend l'intervalle optique  ? 
1-b- Que devient la relation entre x et x', déterminée dans la partie I,-1-a-? 
1-c- Calculer le grandissement transversal T . Conclusion ? Retrouver cette propriété 

grâce à un schéma simple (qui ne fera apparaître qu’un seul rayon lumineux bien 
choisi) 

1-d- Un pinceau incident de rayons parallèles fait l'angle θ avec l'axe optique de la 
lunette, les émergents de la lunette font l'angle θ ' avec l'axe optique.  
1-d-i- Faire la construction du pinceau émergent. ( pour plus de clarté, on ne 
respectera pas l'échelle et on prendra f '1 = 2.f '2 ) 

1-d-ii- Déterminer le grossissement angulaire G = 
'


. 

Quelle relation relie G et T ? 
1-d-iii- En déduire l'angle sous lequel on voit la Lune à travers la lunette. 

 
II- On transforme la lunette en longue vue qui donne d'objets très éloignés des images droites. 
Pour cela, on interpose entre l'objectif L1 et l'oculaire L2 une lentille mince Lv, appelée 
véhicule, de distance focale f 'v = 18 mm. 

1- Le véhicule Lv est placé à la distance d 1 v v

3
F ' O .f '

2
   = 27 mm au-delà du plan focal 

image de l'objectif L1. 
Déterminer la nouvelle position de l'oculaire L2 qui permettra toujours d'observer sans 
fatigue pour un œil "normal" l'image d'un objet à l'infini. 

 
2- Un rayon incident fait l'angle θ avec l'axe optique, le rayon émergent de la longue vue, 

toujours réglée en vision à l'infini) fait l'angle θ" avec l'axe optique. 
2-a- Faire la construction géométrique du rayon émergent (les échelles ne seront toujours 

pas respectées). On positionnera, lors de cette construction le foyer objet de la lentille 
L2. 

2-b- Montrer que le grossissement angulaire de la longue vue est v

''
G ' G.


  


, G 

désignant celui de la lunette étudiée en I et γv le grandissement par la lentille Lv de 
l'image de l'objet AB à l'infini par L1. Conclusion ? 

2-c- L'encombrement du système est la distance entre l'objectif et l'oculaire : 1 2O O . 

Déterminer l'augmentation d'encombrement de la longue vue par rapport à la lunette. 
 
  

 
 
 
 
 
 



Problème 3 : chimie 
 
 

 

 
 
 
 
 



  

  



  
  
  
  
  
  

  
  
  
  
  
  
  
  
  



  
  
  
  
  
  
  

  
  


