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Exemples de régimes variables en géométrie 
planes 

I- Durée et portée de la diffusion thermique lors d’un régime transitoire. 

 Objectif :  

En effectuant un raisonnement en ordres de 
grandeur à partir de l’équation de diffusion, 
évaluer rapidement et simplement la durée 
typique diff qu’il faut attendre pour observer 
l’effet de la diffusion thermique sur une longueur 
typique L dans un milieu sans source interne.  

 Exemple : 

Etude de la température en un point M d’un milieu 
unidimensionnel de température initiale T0, mis en 
contact à t = 0 avec un thermostat de température 
T1 (figure ci-contre). 

La durée diff est alors la durée à attendre pour que 
la température en M, situé à la distance L du 
thermostat, devienne significativement différente 
de T0 , la valeur T1 étant atteinte au bout de 
quelques diff . 

 Raisonnement : 

 Dans le cadre d’une diffusion uni-dimensionnelle 1, et en l’absence de source interne, la température en tout 
point du milieu et à tout instant vérifie l’équation de diffusion : 
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 Que valent, en ordres de grandeur et au voisinage de x = L et t = diff, les dérivées spatiales et temporelles 
présentes dans cette équation ? Les évolutions spatiale et temporelle de T (x,t) étant monotones et relativement 
« douces », on obtient un bon ordre de grandeur en écrivant 2 : 
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 La compatibilité de ces ordres de grandeur avec l’équation de diffusion impose alors : 
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1  On s’est placé ici en symétrie plane ; une autre symétrie ne change toutefois rien aux ordres de grandeur obtenus.  
2  On ne se préoccupe pas du signe de ces dérivées : l’équation de diffusion assure que 2 2 et T t T x    sont de même signe 

et on se contente donc d’évaluer leurs valeurs absolues pour arriver rapidement au lien entre L et . 
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 Conclusion : 

La durée typique d’une diffusion thermique sur une longueur L est :  
2

diff

L

D
  . 

La portée typique d’une diffusion thermique sur une durée   est  :  diffL D  . 

Ainsi, l’intensité de la diffusion thermique dépend de la conductivité thermique  du milieu mais la durée 

et la portée de la diffusion dépendent de sa diffusivité thermique D
c




  

 
 Comparaison avec un transfert convectif : 

Les relations 
2

diff
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D
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et diffL D   se généralisent à tout phénomène physique de diffusion, c’est-

à-dire à tout phénomène piloté par une équation de la forme 
f

D f
t


 
  

comme par exemple la 

diffusion de particules (la fonction f  est alors la densité particulaire et D l’analogue de la diffusivité 
thermique relativement à la diffusion des particules).  

A contrario, un transfert thermique convectif sur une distance L se fait sur une durée typique
 

conv

L

v
   

où v est la vitesse typique de l’écoulement ; idem pour un phénomène propagatif à la vitesse v. La 

comparaison de 
2

diff

L

D
   et conv

L

v
   montre clairement que : 

Contrairement à un transport convectif ou propagatif où la durée typique augmente linéairement avec la 
distance L, la durée typique de diffusion augmente comme L2 : le transport par diffusion n’est donc 
efficace qu’à « courte distance » 3. 

Par exemple, pour un solide de diffusivité thermique D = 10-4 m2.s-1, la diffusion thermique sur 1cm 
prend 1s, alors que sur 1 m elle prend 104 s soit environ 3h !! Un transfert convectif prenant 1 s sur 
1 cm (v = 1 cm/s) ne prendrait que 100 s, soit 1 min 40 s, sur 1 m. 

 Généralisation de l’analyse en ordre de grandeur d’une équation différentielle spatio-temporelle : 

En généralisant, on peut dire que dans une équation différentielle portant sur une fonction f de deux 
variables x et t, donnant lieu à des solutions monotones et suffisamment « douces », les dérivées 
spatiales et temporelles peuvent être évaluées grossièrement à partir de la taille typique L et de la 
durée typique   mises en jeu dans le problème, ainsi que de l’intervalle typique de variation de f ; on 

peut alors exploiter l’équation différentielle pour relier, en ordres de grandeur, L et   4.  

 
3  Cette différence d’efficacité entre diffusion et convection / propagation pourrait expliquer que le cerveau humain 

communique avec l’ensemble du corps par propagation d’influx nerveux (« efficace à grande distance » i.e. des pieds à la 
tête), alors que les neurones du cerveau communiquent entre eux par diffusion de neurotransmetteurs au niveau des synapses 
(« efficace à très courte distance », i.e. à l’échelle de la synapse) … 

4  Par exemple, le même raisonnement réalisé à partir de l’équation de d’Alembert fournit, pour une onde monochromatique 
f (x,t), le lien entre la période T et la longueur d’onde . En effet, par définition, f et ses dérivées varient de façon monotone 
de de fmin à fmax sur la durée T /2 et sur la longueur  /2 ; on a donc: 
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II- A.R.Q.S. thermique. 

A- Exemple introductif : 

B- Définition de l’ARQS thermique : 

 

 

 

 

C- Condition validité de l’ARQS thermique : 

 

 

 

 

d’où : 
  

max min max min
2 2 2

1

4 4

f f f f

c T 
      soit, après simplification :  cT 

 

Quel est l’intérêt de cette étude ? De montrer, sans avoir besoin de chercher explicitement les solutions f (x,t), que le terme 
c de l’équation représente la vitesse de propagation !  

Attention : dans un problème où un point M se trouve à une distance L d’une source monochromatique, on ne peut pas 
montrer que l’onde arrive en M au bout d’une durée L c   en faisant la même analyse que pour la diffusion, c’est-à-dire 

en évaluant :  2 2 2
max minf t f f      et  2 2 2

max minf x f f L    . En effet, bien que l’onde se propage de x = 0 à L 

entre t = 0 et , la fonction f  ne varie pas de façon monotone entre x = 0 et L et t = 0 et  ; sur ces intervalles-là f oscille, et 
ce sont donc T et  qui doivent être utilisés pour évaluer correctement les dérivées ! A méditer… 
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D- Intérêt de l’ARQS thermique : 

 

 

E- Equation de diffusion dans l’ARQS : 

 

F- Exemple d’application : 
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III- Diffusion thermique en régime sinusoïdal forcé. « Onde thermique ». 

A- Exemple de référence : température du sous-sol.  

On s’intéresse à une situation modèle où l’espace est rapporté à un repère (Oxyz) dont 

l’axe (Oz) est confondu avec la verticale descendante et le plan z = 0 avec la surface 

du sol (figure ci-contre).  

 Le demi-espace z < 0 modélise l’atmosphère, dont la température  airT t  est 

supposée uniforme et variable au cours du temps, sous forme d’oscillations 

périodiques de pulsation .  

↳ Cette oscillation peut modéliser les variations ayant lieu sur une journée, du 

fait de l’alternance jour-nuit, auquel cas 52
7,3.10 rad/s

1 jour


    ; 

↳ Si l’on considère les températures mises en jeu comme des températures moyennes sur une journée, 
l’oscillation peut modéliser les variations ayant lieu sur une année, du fait de l’alternance des 

saisons, auquel cas 7 -12
2,0.10 rad.s

1an


   . 

 Le demi-espace z > 0 modélise le sous-sol, dont la température  T z, t  dépend uniquement de la profondeur 

z et du temps ; les variations temporelles de T sont dues à celles de airT  et à la diffusion thermique de la 

surface vers le sous-sol, dont la diffusivité thermique est notée D et est  106 m2.s1. On néglige toute 

discontinuité de température due à la conducto-convection à la surface du sol. 

L’objectif de l’étude est de déterminer le champ de température  T z, t
 
et de comprendre comment les oscillations 

de température de la surface se répercutent en profondeur. 

 

B- Approche semi-qualitative du problème. 

Sans calculer le champ de température  T z, t  mais en utilisant les résultats du § 1 ci-dessus, montrer qu’il existe 

une profondeur critique au-delà de laquelle la température ne varie quasiment pas au cours du temps, malgré les 

oscillations périodiques existant à la surface. 
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C- Propriétés du champ de température. 
 

Le champ de température recherché  T z, t  doit vérifier les propriétés suivantes : 

 Il est solution de l’équation de diffusion :   
2

2

T T
D T D

t z


  
     

t z  0  

 Il est continu en z = 0 :      airT z 0, t T t t    

 Il ne diverge pas lorsque z    
 

D- Modélisation par une oscillation sinusoïdale en surface et un régime sinusoïdal 
forcé. 

Commençons par un modèle simple dans lequel la température de l’air oscille sinusoïdalement autour d’une 

température moyenne T0 :    air 0 1T t T sin t    

Afin de satisfaire la condition limite :    airT z 0, t T t t    , et compte tenu de la linéarité de l’équation de 

diffusion, on est conduit à chercher une solution  T z, t  elle-même sinusoïdale de pulsation  autour d’une 

température moyenne  T z , toutes les grandeurs (valeur moyenne, amplitude et phase) étant a priori fonction de 

la profondeur ; on pose donc 5 :             1 1 1 1T z, t T z z, t    avec   z, t a z sin t z        

Il faut alors injecter cette expression dans l’équation de diffusion afin de montrer qu’elle en est bien solution, et 

de déterminer les fonctions inconnues :
 
     1 1T z , a z  et z

 
; ou mieux : imposer séparément à  T z  et  1 z, t  

de vérifier l’équation de diffusion 6 : 

 

 

  

 
5  Ce régime peut être qualifié de sinusoïdal forcé ou de permanent sinusoïdal (RPS). Il n’est pas instantanément observé si 

on imagine une situation initiale où la température serait uniforme dans l’air et dans le sous-sol, et à partir de laquelle les 
oscillations de airT  commenceraient à se produire : en effet, on observerait dans ce cas un régime transitoire compliqué avant 
d’atteindre ce RPS. Toutefois ce type de régime transitoire n’a pas d’intérêt dans le cadre d’une étude de la température du 
sol sous l’effet de l’alternance jour-nuit ou de l’alternance des saisons ! 

6 Si à  T z  et  1 ,z t  vérifient séparément l’équation de diffusion qui est linéaire, leur somme aussi ; réciproquement, une 
fonction constante et une fonction sinusoïdale formant une famille libre, si leur somme vérifie une équation différentielle 
linéaire et homogène, chacune des deux fonctions doit vérifier cette équation. 
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Ainsi :    
 0 1

z z
T z, t T sin te  


         

    avec :
  
  2D
 


     

Représentation de T ( z fixé, t ) à différentes profondeurs z : 

 

 

t /T 

 

 

 

Commentaires : 

Les oscillations de température de surface se répercutent en profondeur dans le sous-sol, avec : 

 une amplitude qui s’atténue exponentiellement à mesure que l’on descend en profondeur, 

 et un retard (un déphasage) qui croit à mesure que l’on descend en profondeur.  

Ce retard peut donner l’impression d’un phénomène propagatif et c’est pourquoi on parle parfois d’onde 

thermique mais il s’agit bien d’un phénomène purement diffusif et non propagatif ! 

2D



  représente la profondeur de pénétration des oscillations de température dans 

le sous-sol et est d’autant plus faible que ces oscillations sont rapides 7. Cette propriété peut 
être qualifiée d’effet de peau thermique ! 8 

A  fixée,   est logiquement d’autant plus faible que D est faible,  

c’est-à-dire que les transferts thermiques sont lents. 

Ces résultats se généralisent à tous les matériaux. 

Applications numériques (avec D  106 m2.s1) : 

 Dans le cas de l’alternance jour-nuit, 5 17,3.10 rad.s   , d’où :   = 17 cm. 

Et dans le cas de l’alternance des saisons, 7 12,0.10 rad.s   , d’où :   = 3,2 m. 

Conclusion : La température d’une cave creusée à une profondeur moyenne de 3 m ne varie absolument pas 

à l’échelle d’une journée ! En revanche, elle varie d’une saison à l’autre, mais avec une atténuation 

significative par rapport aux variations observées en surface. 

 

 
7  Lors de l’analyse qualitative effectuée plus haut, on avait prédit une profondeur typique de l’ordre de D  , qui est bien 

cohérente avec la valeur 2D   obtenue par calcul.  

8 L’équation de diffusion et la résolution en RPS que nous venons de faire sont totalement analogues à l’équation qui pilote le 
champ électromagnétique dans un métal et à sa résolution qui conduit à l’effet de peau électromagnétique (cf. 1er TD sur les 
équations locales de l’électromagnétisme). Cette analogie explique également le recours au terme d’onde thermique, qui 
renvoie à une onde électromagnétique absorbée au voisinage de la surface d’un métal. 

   z = 0 

  z =  

                 z = 3 
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 Si on envisage des oscillations rapides de airT , de fréquence > 1 Hz, on obtient :   < 0,6 mm. 

Conclusion : Aucune variation rapide de la température de surface n’est ressentie en profondeur. On peut 

dire que la matière possède une importante inertie thermique. En généralisant ce résultat, on comprend 

pourquoi un courant alternatif à 50 Hz produisant de l’effet Joule dans un métal ne produit pas 

d’oscillations de température à 50 Hz (cf. § II.4). 

 

E- Etude d’une oscillation périodique quelconque ; utilisation de l’analyse de 
Fourier. 

Pour traiter une oscillation périodique de forme quelconque (par exemple triangulaire si l’on suppose que la 
température croit quasi linéairement le jour et décroit quasi linéairement la nuit), il faut la décomposer en série 
de Fourier puis utiliser les résultats vus lors de l’étude du RPS. En choisissant bien l’origine des temps, on peut 

donc écrire 9 :    air 0 k
k 0

T t T sin k t 



   

et on cherche :
 
        k k

p 0

T z, t T z a z sin k t z 



    

L’étude du RPS effectuée précédemment montre alors que : 

     

 

z

p
0 p

p 0 p

z
T z, t T sin p te





          


   avec :

  
  2D
p

p
 


    qui diminue quand k augmente 

Commentaires : 

Les oscillations de température de surface se répercutent en profondeur dans le sous-sol, avec : 

 une amplitude qui s’atténue à mesure que l’on descend en profondeur, puisque chaque composante de 

Fourier est atténuée exponentiellement ; 

 un retard (un déphasage) qui croit à mesure que l’on descend en profondeur, puisque chaque composante de 

Fourier est ainsi déphasée ; 

 et une forme temporelle qui est modifiée par rapport à celle observée en surface, puisque l’atténuation 

diffère d’une composante de Fourier à l’autre 10.  

Représentation de T ( z fixé, t ) à différentes profondeurs z : 

 

 

 

 

9 Par exemple, si le signal est triangulaire d’amplitude max , on aura : 
 max

2 2 1 2

18
0  ;  

2 1

p

p p p

 


          
 

10 La profondeur de pénétration diminuant avec la fréquence, les composantes les plus rapidement atténuées lorsqu’on descend 
en profondeur sont celles de plus hautes fréquences : ainsi, la forme des oscillations de température se rapproche d’une pure 
sinusoïde lorsqu’on descend en profondeur. 

   z = 0 

  z =  

                 z = 3 
 

 


