Transferts thermiques Cours 4

Exemples de regimes variables en géométrie
planes

I- Durée et portée de la diffusion thermique lors d’'un régime transitoire.

> Objectif :
En effectuant un raisonnement en ordres de
grandeur a partir de 1’équation de diffusion, thermostat =0
évaluer rapidement et simplement la durée

. I
typique zu qu’il faut attendre pour observer l oo M

I’effet de la diffusion thermique sur une longueur
typique L dans un milieu sans source interne.

> Exemple : thermostat e -

Etude de la température en un point M d’un milieu

>
unidimensionnel de température initiale 7o, mis en l oo M

contact a ¢t = 0 avec un thermostat de température
T (figure ci-contre).

L Loy thermostat e~
La durée z est alors la durée a attendre pour que R itelaues ©

la température en M, situé a la distance L du T
1

thermostat, devienne significativement différente 0 M
de To, la valeur T étant atteinte au bout de |
quelques 7.

> Raisonnement :

+ Dans le cadre d’une diffusion uni-dimensionnelle !, et en I’absence de source interne, la température en tout
point du milieu et a tout instant vérifie I’équation de diffusion :
oT 0°T
—=DAT=D— avec D=—
ot Ox pc

» Que valent, en ordres de grandeur et au voisinage de x = L et ¢ = 7y, les dérivées spatiales et temporelles
présentes dans cette équation ? Les évolutions spatiale et temporelle de 7 (x,f) étant monotones et relativement
« douces », on obtient un bon ordre de grandeur en écrivant % :
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= La compatibilité de ces ordres de grandeur avec 1’équation de diffusion impose alors :

TI_TO ~

T-T . L . |6y
D - % soit, aprés simplification : |t,. ~—| ouencore |[La. Dt |.
Lz diff D diff

Taifr

! On s’est placé ici en symétrie plane ; une autre symétrie ne change toutefois rien aux ordres de grandeur obtenus.

2 On ne se préoccupe pas du signe de ces dérivées : 1’équation de diffusion assure que OT/0t et O°T / Ox” sont de méme signe
et on se contente donc d’évaluer leurs valeurs absolues pour arriver rapidement au lien entre L et 7.
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> Conclusion :

. . cee s . |0
La durée typique d’une diffusion thermique sur une longueur L est: 7, =—

La portée typique d’une diffusion thermique sur une durée v est : L, =./Drt.
Ainsi, ’intensité de la diffusion thermique dépend de la conductivité thermique A du milicu mais la durée

et la portée de la diffusion dépendent de sa diffusivité thermique D = 3
pc

> Comparaison avec un transfert convectif :

. 15 . . , . ) e ,
Les relations t, = D et L,y =+/D7 se généralisent a tout phénomene physique de diffusion, c’est-

. : . f
a-dire a tout phénomene piloté par une équation de la forme gt =D Af comme par exemple la

diffusion de particules (la fonction f est alors la densité particulaire et D 1’analogue de la diffusivité
thermique relativement a la diffusion des particules).

A contrario, un transfert thermique convectif sur une distance L se fait sur une durée typique t_,,=—
ou v est la vitesse typique de I’écoulement ; idem pour un phénoméne propagatif a la vitesse v. La
2

comparaison de T, =— et T — montre clairement que :
D

conv

Contrairement a un transport convectif ou propagatif ou la durée typique augmente linéairement avec la
distance L, la durée typique de diffusion augmente comme L : le transport par diffusion n’est donc
efficace qu’a « courte distance » °.

Par exemple, pour un solide de diffusivité thermique D = 10 m2.s™!, la diffusion thermique sur lem
prend 1s, alors que sur 1 m elle prend 10* s soit environ 3h !! Un transfert convectif prenant 1 s sur
1 cm (v =1 cm/s) ne prendrait que 100 s, soit 1 min 40 s, sur 1 m.

> Généralisation de I’analyse en ordre de grandeur d’une équation différentielle spatio-temporelle :
En généralisant, on peut dire que dans une équation différenticlle portant sur une fonction f de deux
variables x et t, donnant lieu a des solutions monotones et suffisamment « douces », les dérivées
spatiales et temporelles peuvent tre évaluées grossiérement a partir de la taille typique L et de la
durée typique T mises en jeu dans le probléme, ainsi que de I’intervalle typique de variation de f'; on

peut alors exploiter 1’équation différentielle pour relier, en ordres de grandeur, L et T *.

3 Cette différence d’efficacité entre diffusion et convection / propagation pourrait expliquer que le cerveau humain
communique avec 1’ensemble du corps par propagation d’influx nerveux (« efficace a grande distance » i.e. des pieds a la
téte), alors que les neurones du cerveau communiquent entre eux par diffusion de neurotransmetteurs au niveau des synapses
(« efficace a trés courte distance », i.e. a I’échelle de la synapse) ...

4 Par exemple, le méme raisonnement réalisé a partir de I’équation de d’Alembert fournit, pour une onde monochromatique
f(x,), le lien entre la période T et la longueur d’onde A. En effet, par définition, f et ses dérivées varient de fagon monotone
de de fiin A finax sur la durée 7'/2 et sur la longueur 4/2 ; on a donc:

2 2 o 2 _ )
— a }2(‘ avec : a { ~ f;nax f;‘nin et: 6 { ~ f;nax j;nm
Ox ot (1/2) Ox (4/2)

10°f
—ZJS A
c¢* o 4
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II- A.R.Q.S. thermique.

A- Exemple introductif :

Situation initiale (régime permanent grace au feu) T(x)
{ ) immmmmnmn—— t<0

X
X
(@) Evolution brutale des conditions aux limites 4 t = 0 @ Evolution lente des conditions aux limites at =0 : ARQS
Feu coupé et i Feu coupé,
Fenétre ouverte Fenétre fermée
Tiat) =0t << bt <t A L,=0 =t 2 <Rk
X X

B- Définition de ’'ARQS thermique :

C- Condition validité de 'ARQS thermique :

. [ A AT S . N .
doy: —Lfmax__Jmin o 2 max mn - soit, apres simplification : (A ~cT
cz T2/4 22/4 p p f -

Quel est l'intérét de cette étude ? De montrer, sans avoir besoin de chercher explicitement les solutions f (x,t), que le terme
c de ’équation représente la vitesse de propagation !

Attention : dans un probléme ou un point M se trouve a une distance L d’une source monochromatique, on ne peut pas
montrer que [’onde arrive en M au bout d’une durée T = L/c en faisant la méme analyse que pour la diffusion, ¢’ est-a-dire

en évaluant : 3°f |08 = (frw — foin )] T €t O f]OX* 2 (foee — fuin )/ L - En effet, bien que I'onde se propage de x = 0 d L

entre t = 0 et 7, la fonction f ne varie pas de fagon monotone entre x = 0 et L et t = 0 et 7, sur ces intervalles-la f oscille, et
ce sont donc T et A qui doivent étre utilisés pour évaluer correctement les dérivées | A méditer ...
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D- Intérét de I’ARQS thermique :

E- Equation de diffusion dans ’ARQS:

F- Exemple d’application :
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I1I- Diffusion thermique en régime sinusoidal forcé. « Onde thermique ».

A- Exemple de référence : température du sous-sol.

)
- =

On s’intéresse a une situation modele ou I’espace est rapporté a un repere (Oxyz) dont  / .
l‘\( Atmosphére

’axe (Oz) est confondu avec la verticale descendante et le plan z = 0 avec la surface .

. S T. (l’)
du sol (figure ci-contre). g
T
e Le demi-espace z<0 modélise I’atmosphére, dont la température T, (t) est g—hh D T(z,1)
supposée uniforme et variable au cours du temps, sous forme d’oscillations & o CAn
. . . O Ex
périodiques de pulsation ®. =
S -

£

L Cette oscillation peut modéliser les variations ayant lieu sur une journée, du

fait de I’alternance jour-nuit, auquel cas o = =7,3.10"rad/s ;

1jour

L Si’on consideére les températures mises en jeu comme des températures moyennes sur une journée,
I’oscillation peut modéliser les variations ayant lieu sur une année, du fait de I’alternance des

saisons, auquel cas » = 2 _ 2,0.10 "rad.s™.
lan
¢ Le demi-espace z > 0 modélise le sous-sol, dont la température T(z, t) dépend uniquement de la profondeur
z et du temps ; les variations temporelles de 7 sont dues a celles de 7, et a la diffusion thermique de la
surface vers le sous-sol, dont la diffusivité thermique est notée D et est ~ 10°° m%s™'. On néglige toute
discontinuité de température due a la conducto-convection a la surface du sol.

L’objectif de I’étude est de déterminer le champ de température T (z, t) et de comprendre comment les oscillations
de température de la surface se répercutent en profondeur.

B- Approche semi-qualitative du probléeme.

Sans calculer le champ de température T(z, t) mais en utilisant les résultats du § 1 ci-dessus, montrer qu’il existe
une profondeur critique au-dela de laquelle la température ne varie quasiment pas au cours du temps, malgré les
oscillations périodiques existant a la surface.
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C- Propriétés du champ de température.

Le champ de température recherché T(z,t) doit vérifier les propriétés suivantes :
o’T

ZZ

YtVz>0

e Il est solution de 1’équation de diffusion : gf =DAT=D

o Ilestcontinuenz=0: T(z=0,t)=T, (t) Vt

¢ Il ne diverge pas lorsque z — oo

D- Modélisation par une oscillation sinusoidale en surface et un régime sinusoidal
forcé.

Commengons par un modele simple dans lequel la température de I’air oscille sinusoidalement autour d’une
température moyenne To : T, (t)=T, + 6, sin(ot)

Afin de satisfaire la condition limite : T(z=0,t)=T, (t) Vt , et compte tenu de la linéarité de I’équation de
diffusion, on est conduit a chercher une solution T(z,t) elle-méme sinusoidale de pulsation @ autour d’une
température moyenne T(z) , toutes les grandeurs (valeur moyenne, amplitude et phase) étant a priori fonction de
la profondeur ; on pose donc * : T(z,t)=T(z)+0,(zt) avec 0, (zt)= al(z)sin(cot + (pl(z)>

11 faut alors injecter cette expression dans 1’équation de diffusion afin de montrer qu’elle en est bien solution, et
de déterminer les fonctions inconnues : T(z),a,(z) et ¢,(z) ; ou mieux : imposer séparément & T(z) et 0, (z,t)
de vérifier I’équation de diffusion © :

5> Ce régime peut étre qualifié de sinusoidal forcé ou de permanent sinusoidal (RPS). Il n’est pas instantanément observé si
on imagine une situation initiale ou la température serait uniforme dans 1’air et dans le sous-sol, et a partir de laquelle les
oscillations de T, commenceraient & se produire : en effet, on observerait dans ce cas un régime transitoire compliqué avant
d’atteindre ce RPS. Toutefois ce type de régime transitoire n’a pas d’intérét dans le cadre d’une étude de la température du
sol sous I’effet de I’alternance jour-nuit ou de 1’alternance des saisons !

Sia T(z) et 6 (z,¢) vérifient séparément 1’équation de diffusion qui est linéaire, leur somme aussi ; réciproquement, une
fonction constante et une fonction sinusoidale formant une famille libre, si leur somme vérifie une équation différentielle
linéaire et homogeéne, chacune des deux fonctions doit vérifier cette équation.
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Ainsi: T(z,t)=T, + 616_2/5((”) sin[o)t ——

()

avec : 6(03):\/?

Représentation de 7T ( z fixé, ¢ ) a différentes profondeurs z :

Commentaires :

Les oscillations de température de surface se répercutent en profondeur dans le sous-sol, avec :

e une amplitude qui s’atténue exponentiellement a mesure que 1’on descend en profondeur,

e ectun retard (un déphasage) qui croit 8 mesure que 1’on descend en profondeur.
Ce retard peut donner I’impression d’un phénoméne propagatif et c¢’est pourquoi on parle parfois d’onde
thermique mais il s’agit bien d’un phénomeéne purement diffusif et non propagatif'!

2D , . . - ,
8= /— représente la profondeur de pénétration des oscillations de température dans
®

le sous-sol et est d’autant plus faible que ces oscillations sont rapides 7. Cette propriété peut
étre qualifiée d’effet de peau thermique !

A o fixée, o est logiquement d’autant plus faible que D est faible,
c¢’est-a-dire que les transferts thermiques sont lents.

Ces résultats se généralisent a tous les matériaux.
Applications numériques (avec D ~ 10 m2s™) :

e Dans le cas de I’alternance jour-nuit, ® =7,3.10 °rad.s™', d’ou: § =17 cm.

Et dans le cas de I’alternance des saisons, ®=2,0.10 'rad.s', d’ou: §=3,2 m.

Conclusion : La température d’une cave creusée a une profondeur moyenne de 3 m ne varie absolument pas
a I’échelle d’une journée ! En revanche, elle varie d’une saison a 1’autre, mais avec une atténuation

significative par rapport aux variations observées en surface.

7 Lors de ’analyse qualitative effectuée plus haut, on avait prédit une profondeur typique de ordre de /zD/w , qui est bien
cohérente avec la valeur \/2D/@ obtenue par calcul.

8 L>équation de diffusion et la résolution en RPS que nous venons de faire sont totalement analogues a I’équation qui pilote le
champ électromagnétique dans un métal et a sa résolution qui conduit a I’effet de peau électromagnétique (cf. 1 TD sur les
équations locales de 1’¢lectromagnétisme). Cette analogie explique également le recours au terme d’onde thermique, qui
renvoie a une onde électromagnétique absorbée au voisinage de la surface d’un métal.
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e Sion envisage des oscillations rapides de T, , de fréquence > 1 Hz, on obtient : 6 < 0,6 mm.

ir >
Conclusion : Aucune variation rapide de la température de surface n’est ressentie en profondeur. On peut
dire que la matiére possede une importante inertie thermique. En généralisant ce résultat, on comprend
pourquoi un courant alternatif a 50 Hz produisant de I’effet Joule dans un métal ne produit pas

d’oscillations de température a 50 Hz (cf. § 11.4).

E- Etude d'une oscillation périodique quelconque ; utilisation de I’analyse de
Fourier.

Pour traiter une oscillation périodique de forme quelconque (par exemple triangulaire si 1’on suppose que la
température croit quasi linéairement le jour et décroit quasi linéairement la nuit), il faut la décomposer en série
de Fourier puis utiliser les résultats vus lors de 1’étude du RPS. En choisissant bien 1’origine des temps, on peut

donc écrire *: T, (t)=T, + i@k sin (kot)
k=0

et on cherche : T(z,t)=T(z)+ iak(z)sin(kmt +¢,(2))

p=0
L’étude du RPS effectuée précédemment montre alors que :

avec : S(pw) = 2D qui diminue quand k augmente
\/ po

z
00 —

T(zt)=T,+) 0, pe) sin[pcot—S(;))

p=0

Commentaires :
Les oscillations de température de surface se répercutent en profondeur dans le sous-sol, avec :
e une amplitude qui s’atténue a mesure que 1’on descend en profondeur, puisque chaque composante de
Fourier est atténuée exponentiellement ;
e un retard (un déphasage) qui croit a mesure que 1’on descend en profondeur, puisque chaque composante de
Fourier est ainsi déphasée ;
e ct une forme temporelle qui est modifiée par rapport a celle observée en surface, puisque 1’atténuation
différe d’une composante de Fourier a I’autre '°.

Représentation de T ( z fixé, t ) a différentes profondeurs z :

F—1, 9 -

Ornen . / =36
/

— p
0 ’ 0 — ngax ( 1)

? Par exemple, si le signal est triangulaire d’amplitude Gax, on aura : {6, 2 =0 2p+1

p—

19 La profondeur de pénétration diminuant avec la fréquence, les composantes les plus rapidement atténuées lorsqu’on descend
en profondeur sont celles de plus hautes fréquences : ainsi, la forme des oscillations de température se rapproche d’une pure
sinusoide lorsqu’on descend en profondeur.



